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Conflicts of interest improve collective computation of
adaptive social structures
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In many biological systems, the functional behavior of a group is collectively computed by the system’s in-
dividual components. An example is the brain’s ability to make decisions via the activity of billions of neu-
rons. A long-standing puzzle is how the components’ decisions combine to produce beneficial group-level
outputs, despite conflicts of interest and imperfect information. We derive a theoretical model of collective
computation from mechanistic first principles, using results from previous work on the computation of power
structure in a primate model system. Collective computation has two phases: an information accumulation
phase, in which (in this study) pairs of individuals gather information about their fighting abilities and make
decisions about their dominance relationships, and an information aggregation phase, in which these
decisions are combined to produce a collective computation. To model information accumulation, we extend
a stochastic decision-making model—the leaky integrator model used to study neural decision-making—to a
multiagent game-theoretic framework. We then test alternative algorithms for aggregating information—in
this study, decisions about dominance resulting from the stochastic model—and measure the mutual
information between the resultant power structure and the “true” fighting abilities. We find that conflicts
of interest can improve accuracy to the benefit of all agents. We also find that the computation can be tuned
to produce different power structures by changing the cost of waiting for a decision. The successful
application of a similar stochastic decision-making model in neural and social contexts suggests general prin-
ciples of collective computation across substrates and scales.
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INTRODUCTION
In biology, function emerges from the interactions of components
making decisions with imperfect information. For example, behavior at
the whole-organism level emerges from the firing activity of billions of
neurons, each of which is responding to noisy input (1, 2). Quorum-
sensing bacteria are able to detect the local density of conspecifics
and change their behaviorwhendensity is sufficiently high, for example,
producing a toxin or phosphorescing. This output depends on the in-
dividual cells’ “decisions” to produce a signaling molecule when they
detect other bacteria close by (3, 4). At a much larger spatial scale, in
macaque and chimpanzee social groups, a distribution of power is the
outcome of noisy decisions between pairs of individuals about which is
subordinate (5–7). In several species of fish, the collective motion of a
school emerges from themovements of individual fish, withmovement
decisions based on how fish perceive the environment and register the
positions of neighbors (8–11). The ability of ant nests to keep out ants
that do not belong can emerge collectively from decisions individual
ants make when they can distinguish those they have met before from
those they have not (12). These examples have inspired engineered
networks: A group of robots can be designed to accomplish a task by
interacting with each other and the environment according to specific
rules (13).

In each of these systems, individuals gather information in noisy
environments and change their behavior as they become better in-
formed. Under some conditions, the joint behavior of individuals
produces a stable aggregate-level pattern, which feeds back to affect
the components’ fitness. This two-part process constitutes a collective
computation (in table S1, we list the inputs and outputs of the individual-
level and collective computations in each of these systems) (14–17).
In many instances, these groups are able to produce collective compu-
tations that are beneficial for the individuals and the group, even though
the individual group members are subject to noisy inputs from the en-
vironment, have conflicts of interest, and have finite time in which to
make decisions. For example, fish schools are able to successfully navi-
gate their environments (18–20), even though individual fish do not
have perfect information, either about the environment or about the
positions of the other members of their school, and different fish pre-
fer different directions (19, 21).

Principles of collective computation
We introduce amodel of collective computation and ground our analy-
ses in the collective computation of power structure in a primate society.
To understand how groups collectively compute solutions, we partition
collective computation into individual and collective phases (22). At the
individual level, we ask how individuals make decisions based on accu-
mulated information (22).At the collective level,we consider information
aggregation, that is, how these decisions combine to produce a compu-
tation. Our goal is to understand how the quality of the computation
varies as a function of both the strategies individuals use to make de-
cisions and the mechanism required to aggregate the information en-
coded in individual decision-making.

At the individual level, three factors are important in decision-
making: (i) making an accurate assessment of the environment, (ii) the
time it takes to reach a decision, and (iii) one’s self-interest, as opposed
to the collective interest. In general, it is not possible to optimize all three
of these factors. There is almost always a trade-off between speed and
accuracy because takingmore time to accumulate information results in
a more accurate decision. This trade-off affects the strategies that
animals use to reach decisions (23). There are also trade-offs between
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decision speed and realizing a preferred outcome. For example, in a
fight, being stubborn and waiting for one’s opponent to give up first
makes winning more likely, but it also makes the fight last longer. In
animal conflicts, human warfare, and economics, this trade-off has
large effects on the strategies that individuals use to resolve differences
(24–26). Finally, there is a trade-off between collective and immediate
self-interest. For example, for groups to stay together, individualsmust
make compromises between the direction the group should be moving,
to migrate successfully or to maximize the group’s food intake, and indi-
vidual movement preferences. The relative importance of group accuracy
versus individual preferences affects both how individuals make decisions
about how to move and the accuracy with which the whole group can
navigate (18, 19, 21). Although there are many studies considering
trade-offs between twoof these three factors—accuracy, time, and individ-
ual preference—few consider the interaction between all three.

The question of how individual-level decisions are combined to
compute an output is essentially a problem of consensus formation.
There are two senses of consensus: The group can come to consensus
with all individuals or components settling on a single decision, which
can be called redundant consensus. In the brain, neurons can reach re-
dundant consensus where they all “agree” about what is present in a
visual stimulus, which can help the brain discriminate among alter-
natives (22). Fish schools navigate more quickly and accurately when
there is a higher degree of redundant consensus about where to move
(18–20). On the other hand, as each group member forms an opinion
about, say, the value of another member of the group, the degree of
agreement among group members about that value can be encoded col-
lectively, with individuals retaining their own opinions, which can be
called collective consensus. In the primate model system studied here,
an individual’s power depends on collectively encoded consensus among
members of its group about its ability to use force successfully (5, 6, 27).

We have reviewed algorithms for computing collectively encoded
consensus elsewhere (6, 27). Here, we focus on the functional utility
of the collective computation, with emphasis on two properties in par-
ticular: the accuracy of the collective computation and the skewness of
the consensus values that are the output of the computation. In the neural
case, the accuracy of an individual’s decision, given the environmental
input, affects how successfully an individual will interact with its envi-
ronment. If an individual is trying to decide among many alternatives,
each alternativemaybe assignedavalue that reflects theneurons’ collective
certainty about that alternative. It should be easier to discriminate among
alternatives if the distribution of consensus values is right-skewed (28).

In the primate model system, “accurate” power scores—those that
reflect the animals’ fighting abilities—are useful because if amonkey can
estimate another’s power, then it can predictwhether it will win in a fight
against the other monkey and what the cost of interacting with it will be
(6). A power structure that accurately reflects themonkeys’ fighting abil-
ities is also more stable because marked role reversals are less likely to
occur (5). Right skewness is also valuable in this system. As in the neural
example, right skewness in the power distribution can be interpreted to
mean that there is high confidence within the group that a few indi-
viduals are disproportionately powerful. These individuals pay little cost
during conflicts and can afford to engage in costly conflict management
behavior that is beneficial to the group (see the detailed description of the
model system below) (5).

Models of individual and collective computation
Avariety ofmodels, including the leaky integratormodel (2, 29–32) and
the sequential probability ratio test (SPRT) (31, 33), have been devel-
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
oped to study how components (for example, individual animals or
neurons) choose among alternatives in a noisy environment [reviewed
in the study of Ratcliff et al. (34)]. For example, the leaky integrator
model has been used to describe the firing of neurons during a motion
coherence task in which a subject must decide whether it is seeing dots
moving left or right (29–31, 35). Both the leaky integratormodel and the
SPRT keep track of the amount of accumulated evidence supporting
alternative choices. The leaky integrator model has the advantage over
the SPRT of allowing for memory loss, but application of the leaky in-
tegrator model to explain, for example, neural firing, has been largely
phenomenological (more details on these decision-making models are
provided in section S1).

Here, we develop a leaky integrator model by deriving stochastic
differential equations (SDEs) that mechanistically specify how infor-
mation is accumulated by components and is used in decision-making.
We use empirical and computational results from work on collective
computation in a primate society model system to justify the form of
our equations. Our model extends the standard leaky integrator model
in two ways: In addition to considering the accuracy of the decision and
the time it takes to make a decision, we introduce a game theoretic
element describing an individual’s preference to be dominant, and we
use the stochastic model to generate a network of pairwise decisions be-
tweenmany individuals, rather than just two. These extensions allow us
to study how the importance of the three decision properties—error rate,
decision time, and individual preference about the decision—influence
(i) the “correctness” of the collective computation of social structure,
(ii) the accessibility of different social structures, and (iii) the best way
to perform the collective computation.
RESULTS
Impact of conflict on signaling decision
The weightw3, given to the probability of an individual’s preferred out-
come being reached, indicates the strength of the conflicts of interests
between pairs of individuals.We start with a pair of individuals, that is, a
group size of two, to build intuition for how the optimization weights
affect theNash equilibrium thresholds. If the error rate of the decision is
important (w1 = 1), the Nash strategies are for the weaker individual to
set its threshold as low as possible and the stronger individual to set its
threshold as high as possible (Fig. 1A). This will, with high probability,
lead to the weaker individual signaling, which is the correct outcome.
When only decision preference matters and there is a strong conflict of
interest between individuals (w3 = 1), the Nash strategies are for both to
set their thresholds high because each prefers to wait for the other to
signal and there is no incentive for the individuals to stop accumulating
evidence (Fig. 1B). As the importance of decision time increases, the
Nash thresholds of both individuals decrease, which enables them to
reach the decision more quickly (Fig. 1, A to D). The error rate with
which a pair using Nash thresholds can reach a decision is lowest when
only error rate matters (w1 = 1) and increases as either decision time or
decision preference becomes more important (Fig. 1E).

In a group with more than two individuals, the Nash thresholds
respond to the optimization weights in a similar way (Fig. 2A). There is
a significant change brought about by introducing additional individ-
uals: As long as there are nonzerowaiting costs, the average error rate of
all decisions in a group using Nash thresholds decreases as error rate
becomes less important and decision preference becomes more impor-
tant (this can be seen bymoving from left to right in Fig. 2B and directly
in Fig. 2C). This can be explained as follows. Consider a case where only
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error rate and decision time matter (as in the blue curve in Fig. 2A,
where w1 = 0.9, w2 = 0.1, and w3 = 0). When any individual raises its
threshold, it becomes less likely to emit the subordination signal to all
of its opponents. This is the correct behavior when it interacts with
animals with lower ability, but an error when it interacts with animals
with higher ability. Thus, when an animal increases its threshold, there
are three effects: a lower error rate in its decisionswith lower animals, a
greater error rate in its decisions with higher animals, and an increase
in its average decision time. Even if the animal’s total error rate would
be smaller with a higher threshold, the improvement will be small be-
cause of the increase in its error rate with higher animals, and it has to
pay the cost of a greater average decision time. Being at Nash equilib-
rium means that it cannot improve its utility by increasing its thresh-
old. However, if the animal starts to value receiving the subordination
signal and decision preference starts tomatter (w3 > 0), then the errors
made by waiting for higher animals to signal are no longer perceived
as costly and are instead perceived as beneficial. This provides an in-
centive for it to raise its threshold and pay the costs for waiting longer
to make decisions. Therefore, increasing the weight given to decision
preference encourages all individuals, except the very strongest and
the very weakest, to raise their thresholds (Fig. 2A, compare iii and iv).
(The strongest individual always uses the maximal threshold allowed.
The weakest would have to wait so long to receive the signal that if there
are any costs to waiting, it will not raise its threshold above theminimum
allowed.) Because nearly all members of the group raise their thresholds,
all decisions take longer, resulting in a decrease in the average error rate
of all decisions. (We analyzed a group of n=20 individuals. In fig. S6, we
show that our results are robust to increasing group size. In fig. S7, we
show how the amount of time it takes for a pair to make a decision de-
pends on the optimizationweights and on the difference in their abilities.)

Impacts of conflict and waiting costs on
collective computation
For each consensus algorithm, the mutual information between the
distribution of social power (DSP) and the underlying distribution of
abilities increases as the pairwise error rate decreases (fig. S8). Hence,
the information content of the consensus scores produced by every al-
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
gorithm is improved when decision preference is prioritized over error
rate (Fig. 2D), as long as the group has more than two components and
there are nonzero waiting costs.

For eachmeasure of consensus, skewness of theDSP ismaximized at
intermediate waiting costs and does not depend strongly on the trade-
off between error rate and preference (Fig. 3) (see section S3 for more
details). Example distributions are shown in fig. S9. Results for all algo-
rithms are shown in figs. S10 and S11.

Impacts of waiting costs on which consensus algorithm is
most informative
For a fully developed network, when there are no waiting costs and
decision preferencematters (w2 = 0 andw3≥ 0.3), weighted in-degree is
the most informative algorithm (Fig. 4A). When there are no waiting
costs and the error rate is very important (w2 = 0 andw3 < 0.3) or when
there are small waiting costs (0 <w2≤ 0.3), eigenvector centrality is the
most informative algorithm (Fig. 4A). These more “global” consensus
algorithms do well whenwaiting costs are low because, in these circum-
stances, the edges of the decision network tend to be accurate and these
measures make use of more information in the network.When waiting
costs are higher, unweighted in-degree and entropy are more informa-
tive than eigenvector centrality, but only by a very small margin (for
further discussion, see section S10). When we consider the status-
signaling network as it develops, we find that eigenvector centrality
has the advantages of never losing information content and consistently
performing well on networks that are not fully formed (Fig. 4, B to D).
DISCUSSION
Conflicts of interest are a general feature of biological and social systems
when resources are scarce or fates are not fully shared [for example,
(36, 37)]. The dominant view in biology is that conflicts of interest
are negative because conflict can lead to instability, gridlock, and
increased mortality [for example, (25, 38–40)]. Yet, some data suggest
that when conflicts of interest are expressed as controlled antagonisms
(for example, fights) in which components can challenge one another at
relatively low cost, this can foster invention and innovation (7, 41–43),
Fig. 1. The error rate of a pair using Nash equilibrium thresholds increases as the weight given to either decision time or decision preference increases. (A to
D) The lines show the Nash equilibrium thresholds for a pair of individuals as a function of the probability that the stronger animal wins, c, with blue indicating the
stronger individual and red the weaker individual. When c = 0.5, the individuals are equally matched. In (C), when c = 0.5, the Nash thresholds are symmetric: Either
individual could use either strategy. The optimization weights for each panel are indicated in the simplex with the corresponding letter. (E) The color in the simplex
indicates the error rate of a decision made by a pair making a difficult decision (c = 0.55) using Nash equilibrium thresholds, as a function of the optimization weights
w1, w2, andw3. In the lower left corner of the simplex, only error rate matters (w1 = 1). In the upper corner, only decision time matters (w2 = 1). In the lower right corner,
only preference matters (w3 = 1). Parameters: in (A), w1 = 1, w2 = 0, and w3 = 0; in (B), w1 = 0, w2 = 0, and w3 = 1; in (C), w1 = 0, w2 = 0.2, and w3 = 0.8; and in (D), w1 = 0,
w2 = 1, and w3 = 0; in all panels, b = 1, r = 1, and l = 0.1.
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facilitate information flow (44), allow components to test strategies (41),
and even improve social cohesion (41). Hence, under some conditions,
it appears that conflicts of interest can be beneficial.

We find support for this view. Specifically, we study a theoretical
model of collective computation, based on data from a primate society
model system. In the first stage of the model, pairs of components learn
about each other through a stochastic process. Then, we quantify the
collective computation of consensus bymeasuring the consensus en-
coded in the network of pairwise decisions about each individual’s
ability. The components in the model have a strategy that dictates
how theymake pairwise decisions.We study how the Nash equilibrium
strategies depend on the importance of the accuracy of the pairwise de-
cision, the amount of time it takes, and the desired outcome. We find
that (i) conflicts of interest can improve the accuracy of the collective
computation to the benefit of all individual competitors and (ii) the
output of the collective computation, in particular the skewness of the
distribution of consensus scores, can be tuned bymanipulating proper-
ties of conflict dynamics.When there are conflicts of interest, eachmem-
ber of a pair desires a different outcome. Strengthening these conflicts
essentiallymakes the componentsmore stubborn,which leads to increased
decision times, and, on average, improves the quality of information aggre-
gation at the group level.

These findings improve our understanding of the emergence of
power structure in primate social groups. In particular, they show how
our primate model system may be able to construct a power structure
that both accurately reflects the animals’ fighting abilities and is right-
skewed (5, 6, 27). The former can be achieved through the conflicts of
interest inherent in the system. The latter can be achieved by changing
the costs of waiting for a decision, for example, by fighting more ag-
gressively andmaking itmore likely for combatants to incur injuries (more
details on how these costs can be tuned are provided in section S11).

More broadly, our findings provide a novel way of interpreting the
widespread observation of competitive dynamics as a means of obtain-
ing themost reliable information about components of a system, rather
than solely as a mechanism by which components can gain access to
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
resources (for more details on how our work extends previous findings
on animal conflict, see section S12). Together, previous results about the
benefits of conflict in biological systems (7, 41–44), along with those
presented here, have implications for understanding the evolution
and social engineering of information aggregation mechanisms and col-
lective computation. If this view of the utility of conflicts of interest is cor-
rect, then we predict, following the study of Stearns (42) and Krakauer
andMira (43), thatwhen informationprocessing is noisy anduncertainty
is high, either strong regulatory mechanisms or conflict arenas will be a
Fig. 2. The mutual information of the power scores computed by a group using Nash thresholds increases as the weight given to decision preference in-
creases, as long as there are nonzero waiting costs. (A) The points show the average Nash thresholds as a function of position in the group for different optimization
weights, where 1 is the strongest individual and 20 is the weakest individual. The shaded region around each curve shows the average plus or minus the SD across 1000
draws. The optimization weights for each line are indicated in the simplex with the corresponding letter. (B) The color in the simplex indicates the average error rate of
all decisions made by members of a group using Nash thresholds, as a function of the optimization weights w1, w2, and w3. In the lower left corner of the simplex, only
error rate matters (w1 = 1). In the upper corner, only decision time matters (w2 = 1). In the lower right corner, only preference matters (w3 = 1). (C) The points show the
average error rate of decisions made by all individuals, as a function of the weight given to decision preference, w3, when w2 = 0.1 [this is also shown by moving from
left to right in the second row of hexagons from the bottom in (B)]. (D) The points show the mutual information between the power scores computed using each
algorithm, as a function of the weight given to decision preference, w3, when w2 = 0.1. Each algorithm is shown in a different color: eigenvector centrality in blue,
unweighted in-degree in green, weighted in-degree in red, and entropy in purple. Parameters: i indicates w1 = 1, w2 = 0, and w3 = 0; ii indicates w1 = 0, w2 = 0, and w3 =
1; iii indicates w1 = 0.9, w2 = 0.1, and w3 = 0; and iv indicates w1 = 0, w2 = 0.1, and w3 = 0.9; in all panels, n = 20, b = 1, r = 1, and l = 0.1.
Fig. 3. The average skewness of the distribution of eigenvector centrality is
maximized at intermediate waiting costs. The color indicates the average
skewness of the distribution of power computed by a group using Nash thresh-
olds, as a function of the optimization weights w1, w2, and w3. In the lower left
corner of the simplex, only error rate matters (w1 = 1). In the upper corner, only
decision time matters (w2 = 1). In the lower right corner, only preference matters
(w3 = 1). Parameters: n = 20, b = 1, r = 1, and l = 0.1.
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general feature of collective computation in biological and social systems,
from biofilms to financial markets.

Our finding also suggests that in the design of any collective com-
putation, it could be advantageous to introduce conflicts of interest
between agents. For example, imagine a group of robots tasked with
evaluating the relative likelihood of various events, where each robot
is responsible for gathering evidence that a given event will occur and
pairs of robots compare how certain they are about their assigned events.
Our results suggest that the network as a whole would come up with
more accurate predictions if the robots were “rewarded” for being more
confident in their assessments than if they were rewarded only on the
basis of the accuracy of their individual assessments.

The stochastic learningmodel that we derived based on our primate
model system is nearly equivalent to one that has been used to describe
stochastic learning in neural populations [for example, (29–31, 35)].
Our model extends this leaky integrator model by incorporating game
theoretic strategic decisions and a social context, thus addressing some
challenges associated with collective computation of social structure.
This raises the possibility of a reapplication of the extended framework
to collective computation in populations of neurons, where conflicts are
not assumed to be common (45, 46). Conflicts of interest, even among
the cells within somatically clonal tissues, could make the brain a better
decision-maker. This provides indirect support for neural Darwinism
(47). When accuracy is not important for decision-making, com-
petitive self-interest reduces to the “war of attrition” game in the
game theory literature (for more details, see section S13) (24–26). The
similarities between three frameworks—social decision-making, neural
decision-making, and game theory—suggest that there are principles of
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
collective computation that could be applicable to a large class of deci-
sion problems in which information is distributed and noisy.
MATERIALS AND METHODS
Model system
Our model system was a well-studied captive group of pigtailed
macaques (Macaca nemestrina; n = 48). This system is characterized
by social learning at the individual level, frequent non-kin interactions,
multi-individual conflict interactions, and social structures that arise
fromnonlinear processes and feed back to influence individual behavior
(see section S2 for more details) (5–7, 38, 41, 48, 49).

Each individual learns about the fighting ability of other members
of the group through direct fighting and observation (for operational
definitions, see section S2.1). If an individual loses many fights against
an opponent, it will come to perceive a large asymmetry in fighting abil-
ity in its opponent’s favor andwill perceive the cost of continued aggres-
sionwith theopponent as greater than the cost of accepting the subordinate
role (41). When this happens, the focal individual can decide to emit a
silent-bared teeth display. The silent-bared teeth display communicates
agreement to the subordinate role in a relationshipwhen emitted during
peaceful contexts (41). The signal is highly unidirectional, that is, if one
individual emits a silent-bared teeth display to another in a peaceful
context, then the second individual is highly unlikely to emit the sig-
nal to the first (6, 41). Fighting after signals are exchanged is reduced,
continuing at a low level, so that the relationship can reverse if the
fighting ability of the weaker individual improves. The decision to
emit the signal constitutes an individual-level computation that in-
volves integrating over a history of fight outcomes to estimate the mag-
nitude of asymmetry between a pair of individuals. The output is a
dominance relationship.

An individual’s power in the group depends on the degree to which
it is collectively perceived as capable of using force successfully in fights
(6). Individuals can estimate power by observing (some subset of) the
network of subordination signals emitted between all pairs of individ-
uals. The distribution of social power (DSP) in the group results from
the collective computation by all individuals of their power scores (see
also section S2) (6, 27). The functional significance of power is evident
in how it changes social interactions. Individuals treat each other differ-
ently according to the power they perceive each other to have: Individuals
solicit support in conflicts from powerful individuals more often, and
powerful individuals use less aggression and receive less aggression when
they do intervene in conflicts (6, 27). Consensus in the group about the
capacity of an individual to successfully use force can bemeasured direct-
ly from the network of subordination signals. In previous work, we
identified seven network metrics that assigned individuals scores
that were significantly correlated with their power scores, as quantified
by these social variables (6, 27).

Both the accuracy with which the DSP reflects “true” fighting abil-
ities and the skewness of the DSP are functionally important. If the DSP
has high mutual information with the underlying distribution of fight-
ing abilities, it will be a reliable predictor of interaction cost (7). The fact
that the distribution of power changes relatively slowly,marked changes
in individuals’ power being relatively rare, and the fact that the individ-
uals do seem to use information about the distribution of power to de-
cide how to interact with each other both suggest that, in this system, the
DSP is in fact highly informative about the individuals’ fighting abilities.
The skewness of the DSP influences conflict management. Heavy-tailed
distributions make otherwise costly conflict-management strategies,
Fig. 4. The best measure of consensus in the decision network depends on
the average error rate and the types of errors being made. (A) The color in-
dicates the most informative consensus measure to apply to a network con-
structed by a group using Nash thresholds, as a function of the optimization
weights w1, w2, and w3. In the lower left corner of the simplex, only error rate
matters (w1 = 1). In the upper corner, only decision time matters (w2 = 1). In
the lower right corner, only preference matters (w3 = 1). (B to D) We show
how the mutual information of each consensus algorithm changes over time as
the network forms. The optimization weights for each panel are indicated in the
simplex with the corresponding letter. Parameters: in (B), w1 = 0, w2 = 0, and w3 = 1;
in (C), w1 = 0, w2 = 0.2, and w3 = 0.8; and in (D), w1 = 0, w2 = 0.4, andw3 = 0.6; in all
panels, n = 20, b = 1, r = 1, and l = 0.1.
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such as policing, accessible to individuals who occupy the tail of the
distribution of power (see section S2 for details on policing and section
S3 for further explanationof the importance of skewness in primate social
structure) (5). It therefore appears from the data that the study groupwas
able to compute a DSP that was both accurate and structured in a ben-
eficial way. Our goal was to understand the factors influencing the quality
of the collective computation and how the group overcomes a noisy
learning environment and the inherent conflicts of interest in this system.

Stochastic approach
Here, we developed a model describing the collective computation of
social structure. First, we developed a stochastic model of individual
decision-making—in this case, whether to signal subordination. The
SDEs used to model noisy decision processes are typically presented
without derivation. Here, we followed the mathematical derivation of
SDEs in chemical systems, as given byGillespie (50), to derive equations
for how an individual learns about the fighting ability of each of its
group mates. Each individual in the group accumulates evidence about
its fighting ability relative to another individual by keeping track of the
fights it has won and lost. For a given pair of individuals, A and B, A has
a decision variable, X1, indicating the evidence that it has accumulated
about its ability relative to B, and similarly, B has a decision variable,X2.
In the absence of new information, the decision variables leak back
toward 0 with rate l (Table 1 lists and defines all the variables used in
the text). If there is no input, then over a period of length t each decision
variable decreases as Xi(t + t) = (1 − lt)Xi(t).

If they do fight and learn about each other, each individual incor-
porates this new evidence into its assessment. Specifically, X1 increases
by an amount bwhen individual Awins a fight against individual B and
decreases by b when it loses, and conversely for X2. To calculate the
variables at time t + t, we count how many times each type of input
occurred in the time since t and add the changes resulting from these
events to the background leaky estimate

Xiðt þ tÞ ¼ ð1� ltÞXiðtÞ þ b � # times i wins in t; t þ t½ Þ �
b � # times i loses in ½t; t þ tÞ

We ignored the possibility of individuals learning about each other
by observing their fights with other individuals. This should mainly in-
crease the rate atwhich they learn about each other and therefore should
not greatly affect our results.

We assumed that individuals fight with each other at a constant rate.
We also assumed that, even if one individual is stronger than another,
there are random factors that affect which of the two will win a fight.
Specifically, we described the number of each type of event—wins and
losses—with a Poisson random variable, NA and NB, giving

X1ðt þ tÞ ¼ ð1� ltÞX1ðtÞ þ bNA � bNB

X2ðt þ tÞ ¼ ð1� ltÞX2ðtÞ � bNA þ bNB

If fights occur at a rate r andAwins with probability c and loses with
probability 1− c, then the expectation ofNA andNB in a period of length
t are, respectively, trc and tr(1 − c). The parameter c ranges between 0
and 1 and is related to the strength of the asymmetry in the individuals’
abilities: If A is stronger, then it is more likely to win and c > 0.5.

When enough events accumulate in an interval of time from t to t +
t, we can approximate the Poisson random variables with normal ran-
dom variables withmean and variance equal to themean of the Poisson
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
random variables. Let ZA and ZB be independent standard normal ran-
dom variables, that is, with a mean of 0 and an SD of 1, giving

X1ðt þ tÞ ¼ ð1� ltÞX1ðtÞ þ b
�
trcþ ffiffiffiffiffiffi

trc
p

ZA
�� b

�
trð1� cÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð1� cÞ

p
ZB

�

X2ðt þ tÞ ¼ ð1� ltÞX2ðtÞ � b
�
trcþ ffiffiffiffiffiffi

trc
p

ZA

�þ b
�
trð1� cÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð1� cÞ

p
ZB

�

Finally, as we make the period of time shorter, where t becomes in-
finitesimally small, these equations become SDEs

dX1 ¼
�� lX1ðtÞ þ brð2c� 1Þ�dt þ b

ffiffi
r

p
dWt

dX2 ¼
�� lX2ðtÞ � brð2c� 1Þ�dt � b

ffiffi
r

p
dWt

where dWt is Brownianmotion representing the wins and losses for in-
dividual A. We assumed that X1(0) = X2(0) = 0. The sensitivity of this
model to initial conditions is discussed in section S4.

Nearly identical SDEs have been used to model decision-making in
the brain (see section S5 for more details) (2, 28, 31). In that case, X1

denotes the firing activity of a neural population responding to one
property in the environment, for example, left motion, and X2 denotes
the firing activity of a neural population responding to its opposite, for
example, right motion. In Table 1, we listed the inputs, outputs, and
variables of the decision model and how they should be interpreted in
both social and neural systems.

Modeling pairwise decisions—individual level computation
An individual decides to signal to another once it is sufficiently certain
that it is the weaker of the two and that the costs of continued fighting
are greater than the potential benefits of waiting for the other to signal.
Here, B signals to A if X2 becomes very negative, and A signals if X1

becomes very negative. Specifically, there are two thresholds, T1 and T2,
such that if X2 < − T2, then B signals and the pair reaches the “decision”
thatA has higher ability and ifX1 <−T1, thenA signals and the decision
is that B has higher ability. It can be shown that, regardless of how high
T1 and T2 are, eventually one individual’s decision variable will reach its
threshold and it will signal.

In the empirical system, individuals do not emit subordination
signals instantaneously (41), so in the model, their thresholds should
be greater than zero. Conversely, in the empirical system, every individ-
ual except the strongest emitted a subordination signal to at least one
other individual (41), so in the model, they should have finite thresh-
olds. We restricted the thresholds that individuals in our model could
use to be between 0.5 and 2.Our results depended on relative changes in
threshold values, not the absolute values of thresholds, so our results
should hold regardless of the actual range of thresholds allowed.

In the neural literature, it is usually assumed that the brain can eval-
uate the difference between two variables, which indicates the relative
strength of evidence for each option. Inmostmodels of neural decision-
making, it is assumed that, if Y = X1 − X2, then the brain decides on
X1 when Y is large and positive and on X2 when Y is large and negative
(2, 30, 31). Again, there are two thresholds,T1 andT2, such that ifY>T1,
then the decision is that A has higher ability and if Y < − T2, then the
decision is that B has higher ability. This reduces the number of relevant
variables from two to one.
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In social systems, the one-dimensional simplification implies a third
party evaluating the difference in the evidence each individual has ac-
cumulated, which is not realistic. Hence, we used the two-dimensional
system. In section S4 and in fig. S1, we show that, with our assumption
that X1(0) = X2(0) = 0, the two-dimensional and one-dimensional pro-
cesses are equivalent (we also show that, ifX1(0)−X2(0) is not zero, then
the twoprocesses are nearly equivalent).Our results therefore also apply
when the one-dimensional simplification is used.

Assessing pairwise decisions
Once the decision thresholds T1 and T2 have been specified, the SDEs
determine the probability that each individual’s decision variable will
reach its threshold before the other, that is, the probability that either
of the two individualswould be the one to emit the subordination signal.
They also determine the expected time it would take for one of the in-
dividuals to signal.We show in section S6 that each of these quantities—
the probability of each individual signaling and the expected time until a
signal is emitted—satisfies a partial differential equation that depends
on the decision thresholds and the parameters of the model.

A “correct” decision is one that results in the weaker individual
emitting the subordination signal. If individual i is theweaker individual
and individual j is the stronger individual, then the probability that
j incorrectly signals is the error rate (ER) of their decision. Each animal
would prefer to receive the subordination signal. Thus, the error rate is
equal to the probability of i’s decision preference being reached (DPi),
whereas the probability of j receiving the signal and j’s decision prefer-
ence being reached is 1minus this quantity (DPj= 1−DPi). The decision
time (DT) for the pair is the expected time until either of the two individ-
uals signals. These quantities determine each individual’s utility from the
decision-making process.Winning any particular fight can give an individ-
ual access to resources, which may improve its fitness. Once an individual
emits the subordination signal, it agrees to be subordinate to its opponent
and cedes access to resources when it comes into conflict with that in-
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
dividual in the future. We were interested in the formation of these stable
relationships, so we focused on the benefits of receiving the subordination
signal, rather than transient benefits from winning any particular fight.

In models of individual conflict and dominance relationships, it is
often assumed that both individuals prefer to be dominant, regardless
of whether they are in fact stronger [for example, (33, 51, 52)]. However,
a correct subordination signal from a weaker to a stronger individual
has been shown to lead to a more stable and affiliative relationship than
would be the case had the signal been withheld (41, 53). Hence, error
rate needs to be considered. Conversely, in models of neural decision-
making, error rate, rather than decision preference, is assumed to be the
currency driving decision-making strategies (30). Our model connects
these two bodies of work by allowing for both error rate and decision
preference to affect individual strategies.

To describe trade-offs between error rate, decision time, and prefer-
ence, we quantified the utility of the decision process by introducing
three weights,w1,w2, andw3 such thatw1 +w2 +w3 = 1. These weights
describe how the three quantities are prioritized. For individual i inter-
acting with individual j, we defined i’s utility to be

Uij ¼ w1ð1� ERÞ þ w2ð1� DTÞ þ w3DPi

Each individual wants to maximize its utility. Note that it is impossible to
minimize both ER andDTbecausewaiting longer and accumulatingmore
evidencewill help the pair reach a decisionmore accurately. Theweightw2

can be interpreted as the cost of fighting because, when w2 is higher, the
time spent fighting until a decision is reached ismore costly. Theweightw3

captures the benefit from being the dominant individual in a pair and the
extent to which each individual perceives agreeing to be subordinate to be
more costly than continued fighting. The higher w3 is, the more stubborn
the individuals will be about waiting for their desired outcome. It is im-
possible for both individuals tomaximizeDPi, sow3 indicates the strength
of the conflict of interests between individuals.
Table 1. Variables in the model and their interpretations in social and neural systems.
Variable
 Model definition
 Social interpretation
 Neural interpretation
ai
 Value of component i
 Fighting ability of individual i
 How much the part of the visual stimulus
to which population i responds is present
in the input.
b
 Change due to new evidence
c
 Strength of input
 Degree of asymmetry between opponents
 Coherence of moving dots
l
 Leak rate
r
 Rate at which evidence appears
 Rate at which fights occur
 Rate at which dots appear
T1 and T2
 Decision thresholds
w1
 Error rate weight
 Cost to both individuals when the stronger
individual incorrectly signals, for example,
because the relationship is less stable
Cost of making incorrect decision,
imposed by experimenter
w2
 Decision time weight
 Cost of prolonged fighting, for example,
injury and opportunity cost of time
Penalty for taking a long time
w3
 Decision preference weight,
captures strength of conflict
Cost of emitting a signal and agreeing to be
subordinate, for example, because of limited
access to resources
X1 and X2
 Decision variables
 Evidence accumulated about relative dominance
 Firing rates of neural populations
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We show outputs of themodel that depend on the three weights,w1,
w2, and w3, on a triangular simplex, as in Fig. 1E. In each such figure,
points in the lower left corner indicate thatw1 is high; points in the upper
corner indicate that w2 is high; and points in the lower right corner in-
dicate thatw3 is high. Points on the edge of the triangle indicate that one
of the threeweights is equal to 0. For example, points on the bottomedge
of the triangle indicate that w2 = 0. Moving left means that w1 is
increasing and w3 is decreasing; moving right means the opposite; and
moving up means that w2 increases.

Nash equilibrium thresholds
We assumed that if two individuals have equal fighting ability, then any
fight between them is a toss-up, that is, c = 0.5, and that as the difference
in their abilities increases, the probability of the stronger individual win-
ning approaches 1.We assigned each individual in the model a fighting

ability ai. Then, we assumed cij ¼ expðai�ajÞ
expðai�ajÞþ1. We further assumed that

each individual has the same decision threshold for all the decision pro-
cesses with each of its peers. Given those thresholds and the importance
of error rate, decision time, and decision preference (w1, w2, and w3,
respectively), each individual i has a utilityUij from its decision process
with individual j and a total utility given by the average of these, 〈Uij〉j.
For each set of abilities {a1, …, aN}, we found the Nash equilibrium
thresholds {T1, …, TN} such that no individual has an incentive to
choose another threshold to improve its total utility. Because the Nash
thresholds depend on the abilities {a1,…, aN}, we drew a set of abilities
from a uniform distribution 1000 times and found the Nash thresholds
for each set.

To show how the weights encoding error rate, decision time, and
decision preference (w1,w2, andw3, respectively) affect decision-making
strategies, below we reported the average Nash threshold for an individ-
ual with the ith highest ability, for each rank i = 1,…, N, where 1 is the
strongest and N is the weakest. However, we used the actual Nash
thresholds, not their average, in our analyses. Specifically, to show
how the weights affect how accurately individuals can make decisions,
we considered 1000 groups of individuals using Nash thresholds and
take the average error rate across all N × (N − 1)/2 pairs and all 1000
iterations. Similarly, we found the average decision time across all N ×
(N − 1)/2 pairs in all 1000 iterations of themodel, where the individuals
in each group used Nash thresholds.

Wewere interested in understanding the factors influencing whether
the collective computationwould produce a right-skewed distribution of
power. To avoid building in a distribution with a long tail, we used a
uniform distribution of fighting abilities because it has short tails. Our
results did not change when we used a normal distribution of fighting
abilities instead of a uniform distribution of fighting abilities (compare
figs. S2 to S4 to Figs. 2 to 4). Our procedure for finding the Nash equi-
librium thresholds is provided in section S7.

Modeling collective computation at group level
We used the pairwise decision model to create a directed signaling
network among all pairs of individuals. We drew the direction of the
signal between each pair according to these probabilities. Once an in-
dividual decided to emit the subordination signal, it continued to do
so regularly over a long period of time. Eventually, the relationship can
reverse if an individual comes to perceive that it could win against an
individual to which it has previously signaled (2). However, this would
take longer than the period of time that we considered, and we do not
allow for this possibility. To describe the accumulation of signals over
Brush, Krakauer, Flack, Sci. Adv. 2018;4 : e1603311 17 January 2018
time, at each point in time t, we defined the weight of the edge from i to
j to be

0 if j signals to i or t < DTij

t if i signals to j and t > DTij

where, as above, DTij is the time it takes the pair to reach a decision.
Individuals can estimate the degree of consensuswithin the group by

observing (some subset of) the network of subordination signals emitted
between all pairs of individuals. For these estimates to be good indica-
tors of the individuals’ true abilities, two things need to happen: First,
the edges in the networkneed to be accurate indicators of the differences
in abilities between pairs of individuals, and second, the algorithm that
individuals use to quantify consensus needs to aggregate the relevant
information appropriately. In previous work, we identified a set of algo-
rithms that can be used to compute consensus about node state in any
network (6, 27). In our system, consensus in the subordination signal-
ing network reflected how much power a node was perceived to have
(6, 27), as described above. For the sake of brevity, we considered four
of the best-performing algorithms here.

Of these, the simplest algorithm was the unweighted in-degree of a
node, that is, the number of individuals that have signaled to each in-
dividual. We also considered weighted in-degree, the sum of all signals
an individual receives. The third algorithm that we considered was the
entropy of the distribution of the numbers of signals that each individ-
ual receives, which gave a coarsemeasurement of the uniformity of all of
the opinions in the group about a focal individual. The fourth was the
eigenvector centrality of the network, whichmeasured how central each
node was in the global structure of the network (27, 54). We generated
1000 directed signaling networks as described above. To each of these
networks, we applied the four network metrics, each of which gen-
erated a DSP.

Assessing collective computation
Weassessed the quality of the output of the collective computation—the
DSP—by assessing the accuracy and skewness of the resulting
distribution. We operationally defined an accurate distribution as one
having high mutual information with the underlying distribution of
fighting abilities. This allowed us to study how conflict influences
DSP accuracy, as well as the relative ability of each algorithm to recover
an accurate DSP [the question of how the system “knows” the desired
output has been achieved, called the “halting problem” in computer
science, is discussed by Flack (7, 17) and in section S8].Wemeasured
the mutual information between the consensus scores produced by a
given algorithm and the underlying distribution of fighting abilities,
over all 1000 iterations of the model (see section S9 for details). We
measured the skewness of the set of consensus scores given by each
algorithm and took the average over the 1000 iterations of the model.
A schematic of the whole model of collective computation, from pair-
wise decision-making to consensus computation, is provided in fig. S5.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/e1603311/DC1
section S1. Background on models of decision-making
section S2. Study system
section S3. Skewness of DSP
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section S4. Dimensionality and initial conditions
section S5. Analogous model of neural decision-making
section S6. Derivation of partial differential equations for decision time, error rate, and
probability of reaching decision preference
section S7. Nash equilibria
section S8. A notion of correctness for biological computation
section S9. Calculation of mutual information
section S10. Most informative measures of consensus
section S11. Tuning waiting costs
section S12. Comparison of our model to previous studies of animal conflict
section S13. War of attrition
section S14. Supplementary table
section S15. Supplementary figures
table S1. Examples of collective computation.
fig. S1. Error rate decreases as decision time increases, as long as the initial conditions are not
biased toward the correct decision.
fig. S2. The mutual information of the power scores computed by a group using Nash
thresholds increases as the weight given to decision preference increases, as long as there are
nonzero waiting costs.
fig. S3. The average skewness of the distribution of eigenvector centrality is maximized at
intermediate waiting costs.
fig. S4. The best measure of consensus in the decision network depends on the average error
rate and the types of errors being made.
fig. S5. Schematic of the model.
fig. S6. The error rate of a group using Nash thresholds decreases as the weight given to
decision preference increases, regardless of the size of the group.
fig. S7. Pairs with similar and high abilities always take as long or longer to make a decision
than any other pairs do.
fig. S8. The mutual information of each consensus algorithm is a decreasing function of the
average pairwise error rate.
fig. S9. The average skewness of the distribution of unweighted in-degree is maximized at
intermediate waiting costs.
fig. S10. The average skewness of the distribution of consensus scores from each measure is
maximized at intermediate waiting costs.
fig. S11. The average skewness of the distribution of consensus scores from each measure is
maximized at intermediate waiting costs.
fig. S12. When a pair of animals have equal fighting abilities, c = 0.5, there are asymmetric
Nash equilibrium thresholds.
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