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Both genetic variation and certain culturally transmitted
phenotypes show geographic signatures of human
demographic history. As a result of the human cultural
predisposition to migrate to new areas, humans have adapted to
a large number of different environments. Migration to new
environments alters genetic selection pressures, and
comparative genetic studies have pinpointed numerous likely
targets of this selection. However, humans also exhibit many
cultural adaptations to new environments, such as practices
related to clothing, shelter, and food. Human culture interacts
with genes and the environment in complex ways, and studying
genes and culture together can deepen our understanding of
human evolution.
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Introduction

The study of worldwide genetic variation has made great
strides in the 25 years since researchers first convened to
plan the Human Genome Diversity Panel (HGDP) [1].
The inital analyses of HGDP data showed that the vast
majority of genetic variation occurs within human popula-
tions; however, the small fraction of between-population
genetic variation could be used to characterize clusters of
individuals, which generally correspond to geographic
regions and can often be further segmented into popula-
tion-level groups [2]. The data produced as a result of this
initiative, combined with the HapMap and 1000 Genomes
initiatives and additional samples from modern and an-
cient populations, continues to shed light on important
aspects of human evolution, including demographic
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history, migration patterns, admixture between groups,
selection pressures, and mutation rates [3°°,4°,5-10].

Meanwhile, it has become increasingly clear that human
culture interacts with genetic variation in complex ways.
Culture can evolve through similar processes to genetic
evolution: cultural variants can have differential survival
and reproduction, but there are notable differences be-
tween cultural transmission, mutation, and inheritance
and their genetic analogues [11-13]. Cultural transmis-
sion does not obey the precise rules that Mendelian
inheritance imposes on single genes, and it may occur
between unrelated individuals. Culturally transmitted
traits, such as norms and preferences, can change within
the course of a human generation, and cultural inheri-
tance may occur over many generations, between groups
rather than individuals, and depend on the environmental
or social context in which an individual lives. Further,
genes and culture often interact: several researchers have
suggested that genetic changes, for example those that
affect brain architecture, can promote large-scale changes
in human culture [14,15], but cultural changes can also
alter the selective advantage of genetic mutations, foster-
ing their spread [16-18]. In one classic example, the
spread of dairy farming and animal domestication in
multiple geographic regions led to a corresponding re-
gional increase in the frequency of genetic variants asso-
ciated with lactase persistence, allowing more individuals
to benefit from drinking milk into adulthood [19,20]. This
interaction between genetic and cultural evolution has
been studied under several research umbrellas, including
gene—culture coevolution, dual inheritance theory, and
cultural niche construction [19,21,22]. Here, we review
the literature on human genetic and cultural variations,
the interactions between them, and the importance of
considering both genes and culture in studies of human
evolutionary history.

Patterns of worldwide genetic variability and
the influence of cultural practices

Geographic patterns of human demographic history have
left detectable signatures on the human genome. For
example, the human migration out of Africa likely oc-
curred by repeated founder events, in which a small group
of people broke away from a larger population to establish
a new settlement [23]. Since each subsequent founder
event constitutes a sample of the genotypes of the larger
group, the serial founder effect model predicts a decrease
in genetic diversity with geographic distance from the
putative human origin in Africa [24]. Patterns of human
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genetic variation have also shed light on the extent of
admixture between different populations [25]. This ad-
mixture can be a result of relatively recent events in
human history, such as colonialism or the advent of
technology that facilitates long-distance transportation
[4°,8,25,26]. However, recent studies have illustrated that
ancient admixture events, such as between modern
humans and Neanderthals or Denisovans, are also detect-
able in the modern human genome [27°°,28°°].

As researchers accumulate genetic data from more human
populations and develop more sophisticated computa-
tional techniques, the effects of various forces in popula-
tion genetics — for example, recent population growth
[29], population separation [30°], range expansion [31],
neutral genetic variation [32,33], and mutational load
[34°] — can be understood in much greater detail. How-
ever, signals of population genetic and demographic
processes in the human genome are complicated by
cultural factors. For example, runs of homozygosity
(ROH) are stretches of the genome where heterozygous
nucleotides are absent or extremely rare, indicating that
an individual’s two chromosomes share a recent ancestor,
with the length of each run dependent on the number of
generations since the common ancestor [35]. ROH can
provide evidence for population bottlenecks and ances-
tral relationships between populations, but it is important
to note that the length of these runs can be dramatically
influenced by cultural practices, particularly those sur-
rounding marriages between relatives [35-37]. Indeed,
homozygosity-based measurements can be used to esti-
mate inbreeding more accurately than can be achieved
with family pedigrees [38], particularly in cases where
parental relatedness is clevated for many generations
[39]. This inbreeding can, in turn, be negatively associat-
ed with phenotypes that are relevant to fitness and health,
such as height, educational attainment [40], and hyper-
tension [41].

Consanguinity and the cultural practices surrounding it
provide one example of a culturally transmitted behavior
that leaves an identifiable signature on the human ge-
nome. Other aspects of human culture, such as religion
[42,43] and sex-specific demographic features [44] includ-
ing sex-biased migration and sex-specific definition of
cultural belonging, can also shape a population’s trajec-
tory of genetic evolution. By separately tracing the evo-
lution of maternally transmitted mitochondrial sequences
and paternally transmitted Y chromosomes, researchers
can test the genetic effects of cultural practices such as
matrilineality and patrilineality [45], as well as other sex-
biased patterns of human demography that are culturally
determined (Figure 1).

For example, the deep phylogenetic history of mitochon-
drial DNA sequences suggests that human populations
were matrilineally structured before the out-of-Africa
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Genetic, environmental, and cultural factors are capable of influencing
one another (dashed arrows), and all three have an impact on human
evolution (solid arrows).

expansion [46]. A further study of Eurasian and African
populations found a discrepancy between the Y chromo-
some and mitochondrial DNA in the signal of expansion
events, implying that male gene flow might have been
restricted in some ancestral lineages [47]. Marital prac-
tices in which a man relocates to his wife’s village upon
marriage have left a genetic signature of reduced effective
population size and genetic diversity for females in Timor
[48]. In contrast, patrilineal societies exhibit male-biased
transmission of reproductive success, likely culturally
transmitted, which leads to reduced genetic diversity
[49]. The sex-specific cultural practices surrounding
age of reproduction can also leave a mark on genetic
variation, with faster matrilineal genetic evolution in
Iceland attributed to a shorter generation interval in
women [50]. In the specific example of the Hindu caste
system, the cultural tradition of hypergamy, in which
women are permitted to marry into a higher social caste
in some circumstances but men are not socially mobile,
has led to female-specific gene flow and, in some cases,
genetic stratification of the populations [51]. Thus, soci-
etal systems and cultural norms can have an affect on
genetic evolution; however specific cultural events can
also leave a mark on the genome. For example, known
migration events or significant cultural innovations in
human history may correspond to dramatic expansions
of the male human lineage, detectable on the Y chromo-
some [52°°]. Although some of the effects of culture on
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patterns of genetic diversity are due to the ways in which
culturally transmitted practices alter effective population
size, others may be due to the spread of the attitudes,
preferences, or norms that have no direct demographic
impact.

Genetic and non-genetic adaptations to the
environment

Underlying these patterns of worldwide genetic variation
is a human tendency to explore previously uninhabited
geographic regions. As a result of this cultural propensity
to migrate to new areas, humans have adapted to differ-
ences in climate, altitude, and resource availability. Some
of these adaptations to new environments are themselves
cultural practices: for example, clothing and foot cover-
ings that are suited to the climate, as well as novel tools
and techniques for food acquisition and cultivation. Mi-
gration to new environments also alters the selection
pressures on the human genome, and comparative genetic
studies have pinpointed certain loci that were likely
targets of this selection [53,54]. For example, highly
pigmented skin protects against skin cancer but reduces
the synthesis of vitamin D3 by the skin, so differences in
the amount of ultraviolet radiation in the environment
place different selection pressures on pigmentation genes
[55]. Polymorphic loci in several genes contribute to
variation in pigmentation, including MCIR and SLC45A2
in skin [56-59] and SLC24A4 in the hair and eyes [59],
whose effects on health can be modified by clothing and
shelter practices.

Migration to high altitude also alters selection pressures,
and the mechanism of genetic adaptation to altitude
appears to differ among Andean, Tibetan, and Ethiopian
highland populations [60]. On the Tibetan Plateau, resi-
dents have a decreased hemoglobin phenotype that
appears to accommodate the reduced oxygen levels at
high altitude; this phenotype is associated with polymor-
phisms in genes such as KPAS! and EGLNI [61,62].
Humans have also adapted to local chemical environ-
ments; for example, high environmental arsenic levels in
the Argentinean Andes have been linked to changes in a
putative gene for arsenic metabolism, AS3MT [63°]. Evo-
lutionary pressures may change when humans migrate to
new climates, but a changing climate also appears to have
an impact on human migration: historical fluctuations in
climate occurred concurrently with the timing of migra-
tion events predicted by analysis of ancient DNA from
South America [64].

Whereas older statistical methods were used to evaluate
signals of environmental adaptation in single nucleotide
polymorphisms and candidate genes, newer Bayesian
algorithms have enabled genome-wide scans for adapta-
tion to the local environment [54], with the caveat that
results of this type of analysis are more stable when
averaged over multiple runs [65]. Across the genome,

climate differences are correlated with polymorphisms in
genes related to UV radiation and metabolism of starch
and sugar, among others, and cultural practices related to
both subsistence strategy and food sources appear to have
had measurable genetic effects [66,67]. Diet provides
another pathway by which culture can interact with the
environment, shaping selection pressures on the human
genome [66].

In addition to associations between environmental vari-
ables and single gene polymorphisms, recently developed
techniques can reveal signatures of local adaptation in
phenotypes controlled by more than one gene, for exam-
ple, a polygenic association between latitude and skin
pigmentation [68°]. Another technique, which detects
signals of polygenic selection within one population,
has shown that genes related to lactose digestion, immune
function (HLLA), and hair and eye pigmentation have
been under selection in the United Kingdom [69]. How-
ever, one researcher estimated that ‘local adaptations are
over 10-fold more likely to affect gene expression than
amino acid sequence’ and found polygenic associations
between the local environment and gene expression
levels in several pathways, including those involved in
response to UV radiation, diabetes, and the immune
system [70].

Local adaptation involves responding to selection pres-
sures, not only related to the climate, altitude, and re-
source availability, but also to the pathogens in the local
environment. In fact, the pathogenic environment may
play a more important role than climate in driving local
adaptation [71]. Further, past adaptive responses to en-
vironmental pathogens might have implications for pres-
ent-day human health: genes found to be linked to
pathogen-driven selection were associated with suscepti-
bility to celiac disease, type 1 diabetes, and other auto-
immune diseases [71]. Other chromic diseases also show
signatures of environmental adaptation, since risk alleles
for numerous diseases are significantly associated with
environmental variables [72]. For example, risk alleles for
asthma were found to be strongly correlated with summer
humidity levels, and risk alleles for several autoimmune
diseases, such as Crohn’s disease, ulcerative colitis, and
systemic lupus erythematosus, appear to be associated
with various features of the local climate [72]. In contrast,
risk alleles for type 2 diabetes seem to follow the pre-
dictions of the serial founder effect model of migration
out of Africa, with the frequency of risk alleles decreasing
with distance from Africa [72-74].

Patterns of worldwide cultural variation

Human genetic and cultural transmission differ in that
culture can be inherited not only from parents but also
from teachers and peers, and thus patterns of cultural
evolution may often diverge from population genetic
histories [11,19]. Even so, some widespread culturally
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transmitted phenotypes appear to show geographic sig-
natures of human demographic history [75,76°,77]. Cul-
tural traits can also respond to selection pressures, as
genes do; for example, in a study of Polynesian canoes,
functional elements evolved more slowly than symbolic
elements, suggesting purifying selection on the proper-
ties of canoes most relevant to the survival of the human
passengers [78]. Since they are transmitted differently
but closely linked, cultural and genetic traits can be
studied using a coevolutionary framework developed
for co-speciating hosts and parasites, as opposed to fram-
ing such traits as two sources of data from the same
organism [79].

Languages, genes, and geography

Language is a culturally transmitted human characteristic
that has been studied for centuries and has recently been
considered in the context of genetic variation. In a recent
global comparison of genetic variation with inventories of
phonemes, the smallest units of sound capable of distin-
guishing meaning between words, both genetic distance
and phonemic distance between populations were signif-
icantly correlated with geographic distance [76°]. The
pattern of worldwide phonemic variation contains signals
of both historical migrations and recent population con-
tact [76°]. However, most studies of regional language and
genetic variation highlight local features that are more
complex than this global pattern (although some regions,
such as Daghestan [80] and New Britain [81], show a
relatively straightforward correlation between genetic
and linguistic diversity). For example, in Northern island
Melanesia [81], North America [82], and northeastern
Thailand [83], language boundaries do not appear to
act as a barrier to gene flow, so genetic distance does
not show a strong association with linguistic distance. In
contrast, in Europe [84], the Caucasus [85], the Niger-
Congo populations of sub-Saharan Africa [86], and the
Kra-Dai linguistic family in Thailand [87], language
seems to be a better predictor of genetic differences than
geography, so genetic distance shows a stronger associa-
tion with linguistic than geographic distance.

Language and sex-biased gene flow

Comparisons of linguistic, genetic, and geographic dis-
tances can also provide evidence for sex-biased demog-
raphy. For example, Y-chromosome genetic distance
among African populations was reported to be more
closely correlated with linguistic distance than with geo-
graphic distance [86,88], whereas mtDNA genetic dis-
tance was associated with both linguistic and geographic
distance [88], suggesting that culturally determined sex-
biased demographic patterns, such as patrilocality and
male-biased language transmission, could have played a
role in the evolution of these populations. In contrast,
among a set of Austronesian populations, language was
more closely associated with genetic differences in
mtDNA than Y-chromosome DNA [89], implying a pat-

tern of sex-biased transmission, such as matrilineality and
female-biased language transmission, that differs from
the pattern of male-biased transmission suggested by
the study of African populations. We can speculate that
variation in the extent to which language differences form
a barrier to gene flow might be related to child-rearing
practices, in particular the transmission of parental atti-
tudes that result in children’s lifelong preferences.

Cultural homophily

Human culture can also bias genetic evolution through
culturally mediated mating preferences. Through assor-
tative mating or homophily, humans often choose mates
who are similar to themselves in certain ways. People
assort on numerous phenotypes, from polygenic traits
such as eye color [90], height, and 1Q [91-93] to behav-
ioral traits such as generosity [94], risk attitude [95],
smoking [96], and education level [97°]. This assortment
may affect fitness; more similar mates tend to have higher
fertility [98]. Further, assortative mating on religion and
educational attainment corresponds to differences in the
length of runs of homozygosity in homophilic groups
[99,100], which could be interpreted as evidence for
inbreeding if assortative mating is not taken into account.
The tendency for assortative mating can itself be cultur-
ally transmitted or may be partially genetic [92], and
evolutionary simulations indicate that increased assorta-
tive mating can have a strong effect on evolution by
facilitating the spread of rare cultural and genetic traits
[101,102]. The tendency for culturally similar individuals
to come into contact more frequently than by chance was
called ‘assortative meeting’ by Eshel and Cavalli-Sforza;
their theoretical analysis showed that such homophily can
have a positive effect on the spread of cooperative be-
havior and that the tendencies to homophily and altruistic
behavior may coevolve [103]. Thus, assortative mating
represents an important mechanism of interaction be-
tween genes and culture that is not often accounted for
in genetic studies.

Conclusions

In sum, researchers can better understand evolutionary
patterns and human demographic history when both genes
and culture are considered. In the 25 years since the
Human Genome Diversity Panel was first proposed, our
understanding of human population structure, local adap-
tation, admixture, and gene-culture coevolution has dra-
matically improved. That said, the juxtaposed study of
genes and culture has potential pitfalls when poorly
deployed, particularly when researchers fall victim to
the use of incomplete data, faulty statistics, or logical
fallacies. Recent examples include (1) the assertion by
Ashraf and Galor that the high genetic diversity in Africa
and low genetic diversity in the Americas are both detri-
mental to economic development whereas the ‘interme-
diate level’ of genetic diversity in Europe is conducive to
such economic development [104], and (2) the proposition
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by Wade that differences between ‘races’ in wealth, 1Q,
and societal institutions have a genetic basis [105]; the
methods and conclusions of both works have been strongly
criticized on biological and anthropological grounds [106—
108]. Extreme care is needed here to guard against the
erroneous conclusion that the genetic diversity of a popu-
lation in any sense determines whether members of that
population are subject to a lack of wealth or intelligence;
such claims run the risk of providing pseudo-scientific
support for those secking to justify economic or social
policies such as ethnic cleansing, systematically mistreat-
ing immigrants, or halting humanitarian aid. With these
caveats in mind, and in light of increased genetic sampling
and improved analysis techniques, the next 25 years hold
great promise for the study of human evolution by con-
sidering both its genetic and cultural components.
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