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Abstract The forces driving cultural accumulation in human populations, both modern
and ancient, are hotly debated. Did genetic, demographic, or cognitive features of
behaviorally modern humans (as opposed to, say, early modern humans or
Neanderthals) allow culture to accumulate to its current, unprecedented levels of
complexity? Theoretical explanations for patterns of accumulation often invoke demo-
graphic factors such as population size or density, whereas statistical analyses of
variation in cultural complexity often point to the importance of environmental factors
such as food stability, in determining cultural complexity. Here we use both an
analytical model and an agent-based simulation model to show that a full understanding
of the emergence of behavioral modernity, and the cultural evolution that has followed,
depends on understanding and untangling the complex relationships among culture,
genetically determined cognitive ability, and demographic history. For example, we
show that a small but growing population could have a different number of cultural
traits from a shrinking population with the same absolute number of individuals in
some circumstances.
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Since migration out of Africa, modern humans have spread to every continent and
succeeded under a great variety of ecological conditions. This ecological and demographic
success is often attributed to the human capacity to accumulate large amounts of useful
information that can be passed between individuals and across generations. However,
exactly what features of behaviorally modern humans (and not other hominids) allowed
culture to accumulate to this unprecedented level is hotly debated within the fields of
archaeology and anthropology (e.g., Klein 2000; Powell et al. 2009; Shennan 2001; Stiner
and Kuhn 2006). Identifying the forces that drive cultural accumulation would help to
explain the emergence of behavioral modernity, the changing rate of cultural evolution over
time, and the variability in toolkit complexity among modern human groups.

The relationship between demography—in particular, population size and density—
and cultural accumulation has been the focus of much attention, with construction and
analysis of mathematical models (Aoki 2015; Aoki et al. 2011; Gilpin et al. 2016;
Henrich 2004; Hochberg 2004; Kobayashi and Aoki 2012; Lehmann et al. 2011;
Powell et al. 2009; Shennan 2001; Strimling et al. 2009), empirical studies (Caldwell
and Millen 2010; Derex et al. 2013; Kempe and Mesoudi 2014; Muthukrishna et al.
2013), and statistical analyses of cultural complexity (Collard et al. 2005, 2013; Kline
and Boyd 2010; Marquet et al. 2012; Read 2006). Influential theoretical treatments
(Henrich 2004; Powell et al. 2009; Shennan 2001) and most laboratory experiments
have concluded that demographic factors, especially population size, should predict
cultural complexity. However, these findings appear to conflict with many statistical
analyses of toolkit complexity in ethnographically described hunter-gatherer popula-
tions (Collard et al. 2005, 2013, 2016; Read 2006), which suggest that proxy measures
of risk, such as above-ground productivity and mean effective temperature, not
demographic factors, predict cultural complexity. On the other hand, an analysis by
Kline and Boyd (2010) of the food-getting technology of relatively isolated and
ecologically similar Oceanic island populations demonstrated significant relationships
between both toolkit size and toolkit complexity and population size, but not environ-
mental factors. These results, taken together with those of Collard et al. (2005, 2013,
2016), may suggest that risk drives cultural accumulation, but that population size
becomes more important when environmental variation is minimal.

Many models do not investigate or test this relationship. Most models hold the
innovation rate constant in order to assess the effects of population size (here and
throughout the manuscript, following Cavalli-Sforza and Feldman 1981, “innovation”
refers to the origination of new traits). Models of the evolution of genetic mutation rate
(the genetic analogue of innovation rate) show that an increase in mutation rate is
adaptive in an unpredictable environment (Carja et al. 2014; Gaál et al. 2010; Kussell
and Leibler 2005; Lachmann and Jablonka 1996; Liberman et al. 2011). There may be
a similar relationship between environmental instability and cultural innovation, sug-
gesting that “necessity is the mother of invention.” This idea is supported by work on
toolkit complexity (Collard et al. 2013), but it is sometimes disputed (Diamond 1998).
Archaeological analyses over long time scales lend support to the idea that innovation
is often linked to periods of environmental change or large migrations (Ziegler et al.
2013; but see Roberts et al. 2016).
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To address the relationship between toolkit complexity, mode of cultural
transmission, and population size, Aoki et al. (2011) introduced a class of stochastic
population models from which they calculated the rate of cultural evolution under each
of four modes of learning. These models and subsequent extensions were based on the
Moran model of reproduction in a finite population and assumed an infinite-sites model
of innovation (Ewens 2004:297). However, in reality, individuals have limited, not
infinite, cognitive capacities, and a finite-sites model might be more appropriate. An
increase in this cognitive limit may explain the rapid increase in cultural complexity in
populations of modern humans compared with Neanderthals (Klein 2008; Klein and
Steele 2013), although some argue that this does not account for the patchy presence of
behavioral modernity in Middle Stone Age Africa prior to its more stable appearance in
Upper Paleolithic Eurasia (Powell et al. 2009).

In order to explain the data on cultural complexity, a model should address the
possible gain and loss of complexity over time as seen in present-day human popula-
tions; interactions with demography and environmental parameters; and the patchy
presence of modern behavior in the archaeological record. Here, we suggest that the
relationship between population size, cognitive capacity, and cultural complexity is
more nuanced than previously appreciated. We show that if cognitive capacity is low
relative to the population size, the rate of evolution and the eventual number of cultural
traits in the population will be low compared with previous predictions based on
infinite sites models (Aoki et al. 2011). We also show that when the cognitive capacity
is high relative to the population size (such that the infinitely many sites model is
relevant), the rate of evolution will be strongly influenced by the innovation rate, which
may be correlated with both environmental unpredictability (Reader and Laland 2003)
and population size. Therefore, in modern human populations we would expect to see a
positive correlation either between population size and cultural complexity, where the
environment is relatively benign and stable, or between risk and cultural complexity,
where the environment is harsh and unpredictable.

The Models

Here we present a combination of analytical and agent-based simulation models based on
Aoki et al. (2011) and Fogarty et al. (2015b). We investigate the implications of limiting
the possible number of cultural traits and extend the model to allow for increasing or
decreasing population sizes to directly address the maladaptive loss of cultural traits (i.e.,
the “Tasmanian question”: see Diamond 1978; Henrich 2004; Jones 1977).

We explore the evolution of culture in which each individual is represented by a
vector whose components are 0 or 1. Each vector is regarded as the cultural repertoire
of an individual. We conduct agent-based simulations and focus on two questions. First,
how are demography and cultural complexity related when we impose limits on
individual cognition by making the vector finite? Second, what are the effects of
population growth or decline, mode of transmission, rates of innovation, and the
efficiency of social learning on the number of cultural traits at equilibrium? We adopt
the following simulation framework.

Consider a population of N individuals in which individual l can be represented by a
vector Cl, where the value for each trait i is denoted by cl,i ; that is, Cl = {cl,1,cl,2,…,cl,M},
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whereM is the total number of possible cultural traits. Thus, an individual is represented by a
“trait vector” in which each trait takes a value of 1 or 0, representing presence or absence,
respectively. We refer toM as the imagination space,which is considered to be under some
sort of genetic control for the analyses presented here but could, with extensions to the
model, change with the amount of culture already present (Fogarty et al. 2015a; Mesoudi
2011). Mesoudi (2011) introduced a limit on the cultural capacity of an individual, which he
referred to as an “effort budget.” This budget allowed an individual to learn socially and
innovate until his/her effort budget was exhausted. Here, the imagination space acts in a
similar way, constraining the number of traits an individual can learn, and influencing the
effective rate of innovation at the population level.

To begin our simulations, each of the N adult individuals is chosen in random order
and given a chance to innovate. Each such individual may innovate a random trait that
is monomorphic for 0 in the population in what we label the “infinite sites” innovation
regime, or for which they have the 0 form, regardless of the values in the rest of the
population, in what we call the “recurrent” innovation regime. The value of this trait in
the individual’s trait vector changes from 0 to 1 with probability μ/N. That is, μ/N is the
innovation rate per individual per time-step, where N time-steps constitute a generation
and μ is the rate per individual per generation. This process repeats until there are no
remaining monomorphic traits (in the case of infinite sites innovation), or all individ-
uals have had one chance to innovate.

After innovation, a naïve individual (with all traits of form 0) is born (making a total of
N + 1 individuals) and learns with probability β by choosing a role model in one of four
different ways: (1) by random oblique transmission: the newborn chooses a role model
randomly from the population of N adults and adopts its complete trait vector; (2) by
success-biased transmission: the newborn samples k random individuals from the popula-
tion ofN adults, selects the individual with the most traits of form 1, and adopts its complete
trait vector; (3) by best-of-k transmission: the newborn samples k random individuals from
the population. For each trait, if any of the newborn’s k role models have the 1 form of the
trait, the newborn will copy that; if not, the newborn will retain 0. In this way the newborn
pieces together its trait vector with input from up to k rolemodels. And finally, (4) by one-to-
many transmission: one individual is chosen at random and is the only available role model
until its death. At birth, a newborn adopts that role model’s complete trait vector. In the
following analyses we report the results for k = 2 for the success-biased and best-of-k
transmission schemes. This value was chosen because there is a large difference in cultural
accumulation between k = 1 (or random oblique learning) and k = 2, but greater values of k
do not have much incremental effect, as shown by Fogarty et al. (2015b).

In each of the four cases, the newborn replaces a random adult in the population. For
one-to-many transmission, if the individual replaced is the role model, a new role
model is selected at random from the population of N adults (including the latest
newborn). If the individual replaced is not the role model, the same role model is
retained for the next time-step. The simulation repeats this process of innovation →
birth → learning → death N times until a new generation of N individuals is consti-
tuted. The whole process is repeated for a specified number of generations.

To calculate the rate of evolution for comparison with previous work (e.g., Aoki
et al. 2011), we set the initial form of each trait to 0 in each individual at the outset of
the simulation. Once a trait reaches fixation (i.e., all N individuals have the 1 form of that
trait), that site is reset to0 inall individuals, allowing further innovationat the site.Thenumber
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of fixation/reset events is counted and divided by the number of generations in the simulation
run to give the rate of evolution. This is directly comparable to the analytical calculations of
Aoki et al. (2011) for the infinite cultural sites model.

The parameter β represents the probability of transmission of the 1 form of
each cultural trait (Lehmann et al. 2011). β is a per-trait probability of copying,
and traits are copied independently. When computing the rate of evolution we set
β = 1. If copying fails (probability 1 − β), the newborn retains the 0 form of the
cultural trait. Each simulation is run for T = (nGen)N time steps where nGen
represents the number of generations. The mean number of cultural traits in the
population and other measures of cultural complexity are then calculated over the
second half of each simulation run, from generation nGen/2 on. Analytical ex-
pressions for the accumulation of traits for random oblique and best-of-k learning
based on models described in Strimling et al. (2009) and Fogarty et al. (2015b),
which assume M = ∞, are presented in ESM §1.

Population Growth and Decline

Both the simulationmodels described above and their analytical analogues (Aoki et al. 2011;
Strimling et al. 2009; see ESM §1) have assumed a constant population size. It is of course
possible to compare populations of different constant sizes and infer, from this comparison,
the relationship between population growth or decline and cultural complexity. However,
this type of comparison neglects the important role of historical contingency. To address this
issue directly, we use the modelling framework described in the previous section but
introduce an analytical formulation that allows the population to grow or contract over time
such that after every S time steps the population undergoes a birth-only event (in the case of
population growth) or a death-only event (in the case of population decline). This means
that the population size changes by one individual every S time steps. As shown in ESM
§2, this formulation entails exponential change in population size.

We focus on the average number of cultural traits in a population (over individuals;
C
—

pop) as a measure of cultural complexity and denote by C
—

pop;t the average number of

cultural traits present in the population at time t,measured in time steps.C
—

pop;t ¼ ∑
i¼1

Nt

Pi;t,

where the subscript t denotes time and Pi , t is the expected number of cultural traits for
which the 1-variant occurs in i individuals at the beginning of time step t (see ESM §2).
We explore the temporal dynamics of C

—
pop;t through numerical iteration with either a

growing or a declining population as outlined above.

Results

Accumulation of Cultural Traits

The simulated rate of cultural evolution matches the analytical values for the rate of
evolution obtained in Aoki et al. (2011) when M is high relative to N (see the figure in
ESM §1). In our fixed-population-size simulations, the number of cultural traits at
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equilibrium increases with the size of the population, as shown in previous analyses
(Aoki et al. 2011; Henrich 2004; Kempe et al. 2014; Lehmann et al. 2011; Shennan
2001; Strimling et al. 2009). However, both the rate of evolution and the number of
cultural traits in a population exhibit a kind of saturation when M is low or the innovation
rate, μ, is high. This saturation effect occurs when there are relatively few sites available for
innovation, with the consequence that the effective rate of innovation in the simulations is
lower than the nominal rate (data not shown).

Fig. 1 shows that the number of cultural traits in the population has a roughly linear
increase with population size before saturation, but the number of traits slowly reaches
a plateau atM as N increases. This result is seen for both infinite sites mutation (shown
in Fig. 1.) and for recurrent mutation (not shown) and draws attention to an intuitive but
important point relevant to comparisons of the cultural evolution of earlier hominid
species and our own: we expect the relationship between population size and cultural
accumulation to be strong when imagination spaces are large, as is likely for
modern humans, but population sizes are small. However, we expect a weak
relationship or no relationship between population size and cultural accumula-
tion for large populations with relatively smaller imagination spaces. We return
to this point in the discussion.

Cultural Diversity

Another important metric of cultural complexity is cultural diversity. This can be quantified
by calculating the average number of cultural traits at which two random individuals differ,
namely the pairwise Hamming distance. The Hamming distance is a simple count of the
entries in the trait vectors that differ between two individuals. For example, with M = 4, if
individual A has trait vector {1,1,0,0} and individual B has trait vector {0,1,0,1}, the
differences between the vectors occur at the first and last entries and the Hamming distance
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Fig. 1 The average number of cultural traits in the population, C—pop, over the final 1000 simulated
generations with infinite-sites mutation where the number of generations, nGen, was 2000, N = 5, 25,
125, 250, with μ = 1 (i.e., innovations arise once per individual per generation), β = 0.9, k = 2 where relevant.
For panel a, M = 500, and for b, M = 50
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is 2. The average of the quantity is taken over all [N(N − 1)]/2 pairs in the population and
can be regarded as a population-level measure of cultural diversity.

The average Hamming distance for each mode of social learning in the infinite sites
innovation model increases and then sharply decreases as a function of population size
(Fig. 2a) when M = 50 but differs strikingly in the model allowing recurrent innovation
(Fig. 2c). This is due to the fundamentally different roles of innovation and social learning.
Theeffectof innovation is to increase cultural distancebetween individuals—each innovation
occurs only once in the infinite sites model and thus increases the distance between the
innovating adult and the rest of the population. Conversely, the effect of social learning is to
spread traits and to decrease the distance between individuals as they learn from one another.
In the infinite sites regime, each innovation introduces a new trait to the population and
simultaneously reduces the number of monomorphic 0 sites available for change, reducing
the effective innovation rate. When the innovation rate is low, the effect of social learning is
stronger than the effect of innovation on the distance between individuals, causing a sharp
decrease in the averageHamming distance between individuals in the population. This is not
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Fig. 2 Measures of cultural diversity. Panels a and c show the average pairwise Hamming distance in the
population, and b and d show the synchronization measure, R, over the final 1000 generations for N = 5, 25,
125, 250, with μ = 1 (i.e., innovations arise once per individual per generation), β = 0.9, k = 2 where relevant,
and M = 50. Panels a and b show the infinite-sites mutation model and c and d show results for the recurrent
mutation model
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seenwith recurrent innovation and is strongestwhen the “saturation effect”of the infinite sites
assumption becomes important—in other words, whenM is low relative toN—but can also
be seen to a lesser extent whenM is higher. Note that this pattern does not hold for best-of-k
learning, in which case saturation occurs very rapidly.

However, because 0 represents the default trait of a newborn individual, another measure
may be needed to assess whether similarity within populations is, in fact, due to cultural
transmission and not simply to this default. Tomeasure a synchronization effect, we calculate
the ratio,R,ofobservedHammingdistance to itsexpectedvalueunder randommatching.This
is given by

R ¼ Hamming distanceð Þ=2Mp 1−pð Þ

wherep ¼ C
—

ind
M is the frequencyof the1variant (withC

—
ind representing theaveragenumberof

cultural traits of form1per individual in the population) and2p(1−p) is the expected value of
theHammingdistanceper traitwhenC

—
ind variants of value1are randomlydistributedamong

M traits for two individuals.R is smaller when the synchronization effect is stronger.One-to-
many transmissionhas the strongest synchronizationeffect since all newbornscopy thewhole
sequence of one role model. Success-biased transmission also shows strong synchronization
among individuals since a smaller number of successful individuals are preferred as role
models. Finally,best-of-k transmissionhasaweak synchronizationeffect becausepupils copy
individual traits rather than whole trait vectors (Fig. 2b and d).

Population Growth and Decline

Finally, we examine the important cases of population growth and decline. Here, we
separate the effects of population size and population growth and investigate whether
modes and fidelity of transmission affect the accumulation of traits as population size
grows or falls. The panels in Fig. 3 each show a population of a size consistent with a
hunter-gatherer band (N = 30), growing to a size consistent with a hunter-gatherer tribe
(N = 530), and an initially large population (N = 530) in decline. For random oblique
transmission, panels 3a and 3b show the number of cultural traits in the population over time
as the small population grows and as the large population shrinks, and panels 3c and 3d
show the same for best-of-k transmission. The learning fidelity is relatively high (β = 0.7) in
panels 3a and 3c and relatively low (β = 0.5) in panels 3a and 3d. The increase in Cpop

during population growth is approximately linear (see ESM 2).
The population is allowed to reach equilibrium in Cpop at N = 30 before growing to

N = 530. Population decline then begins as soon as the population reaches 530
individuals, and Cpop can be assessed during both growth and decline. We note that
the results are qualitatively similar when we allow populations to reach equilibrium at
the larger population size before this size begins to decline. However, in most cases
reaching this equilibrium takes a considerable number of generations, and the magni-
tude of Cpop at these equilibria makes this an unlikely scenario in a natural setting.

In the case of random oblique transmission, in a growing population cultural traits tend to
accumulate, whereas in a declining population the number of cultural traits tends to decline.
This suggests that population decline can cause substantial cultural loss in the case of random
oblique transmission even for easy-to-learn traits (β = 0.7, Fig. 3a). However, Fig. 3c shows
that this is not the case for all modes of transmission.With the “faster” best-of-k transmission
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(thebest-of-kmodelpredicts ahigher rateof transmission than randomoblique), aspopulation
size declines, the rate of accumulation of traits slows but the number of cultural traits can
continue to increase foreasy-to-learn traits (β=0.7)and, importantly, thevalueofCpopwhenN
reaches30 isconsiderablyhigher than theequilibriumfor thatvalueofN.Fordifficult-to-learn
traits (β=0.5), panel 3d shows that a decline in population size can cause loss of cultural traits
evenwith the faster best-of-k learning. This supports the findings of previous analyses, which
suggested that more complex or difficult-to-learn traits are lost more easily than traits that are
easy to learn (Fogarty et al. 2015b; Henrich 2004), with the caveat that this effect is more
pronounced under faster cultural transmission, e.g., best-of-k. Figure 3 also shows that the
number of cultural traits in a population depends not only on population size but also on the
history of population growth or decline and the mode of cultural transmission.

Discussion

In order to explain the divergence between standard theoretical expectations and
ethnographic data on cultural complexity, we focused on cases where simulations did
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Fig. 3 The average number of cultural traits (C—pop) in a population undergoing growth from the size of a
small human band (N = 30) to a larger population (N = 530) (solid) and decline from N = 530 to N = 30
(dashed) for random oblique (a and b) and best-of-k (c and d) transmission modes calculated using eq. S2.1 in
the ESM. β = 0.7 for panels a and c and β = 0.5 for panels b and d. In panels c and d, k = 2. In all panels,
S = 5. Arrows indicate the direction of time. Note the differences in y-axis scales
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not show a straightforward increase in cultural complexity with population size. We see
this when M is low relative to N, meaning that the imagination space (or cognitive
capacity) of the population is limited relative to the number of individuals in the
population, in which case there is cultural saturation; that is, the availability of sites
for innovation decreases sharply, causing the effective rate of innovation in the simulations
to fall. The recurrent innovation model mitigates this effect by making non-monomorphic
sites available for innovation. However, both innovation models show decreases in the
cultural evolutionary rate and in the number of traits expected in the population compared
with analytical predictions for the infinitely many sites model (Aoki et al. 2011) whenM is
low compared to N. This implies that the relationship between population size and cultural
accumulation depends on complex interactions between innovation rate, cognitive capacity,
and population size.

The lithic technology’s slow rate of change between 600 and 100 kya (Klein
2008) along with its low diversity in the Lower and perhaps Middle Paleolithic
(Stiner and Kuhn 2006) may be explained if ancestral hominins had both a limited
cognitive capacity (low M) relative to modern humans and a sufficiently large
population size (comparable N). This combination would result in a slow rate of
cultural evolution (or evolutionary stasis), where C

—
pop hardly increases (or does

not increase) with increasing N. Powell et al. (2009) used an estimate of effective
population size from coalescent studies of human mtDNA (Atkinson et al. 2008)
to approximate population size for modern humans in the Upper Paleolithic, and
some estimates of effective population size of populations ancestral to both
Neanderthals and humans are becoming available (e.g. Fabre et al. 2009). Of
course, effective population size may be a poor proxy for census population size,
which is of greater relevance to questions of cultural evolution.

Some genetic evidence suggests that Neanderthal effective population size was
similar to that of contemporaneous modern humans, although much smaller than that
of present-day humans (Lalueza-Fox et al. 2011). For example, Atkinson et al. (2008)
estimate the effective population size of modern humans in Europe at ~45kya to have
been around 2900 and Briggs et al. (2009) estimate that the effective population size of
Neanderthals remained small between 70 kya and 30 kya but was similar to that of
modern humans; their estimate is 1470.

The cognitive capacity of Neanderthals is difficult if not impossible to assess
accurately, and some recent discoveries suggest that they were capable of at least
rudimentary engravings (Rodríguez-Vidal et al. 2014). However, Mithen (1996) sug-
gests that Neanderthals might have been unable to understand certain types of informa-
tion in the same way as modern humans. For example, he suggests that they might have
been unable to understand complex cross-domain constructs such as metaphors or
symbolic representation. If this were the case, the number of cultural traits
Neanderthals were capable of producing would have been limited compared with that
of modern humans, who did not share these cognitive restrictions. Overall, given
parameters that reflect this scenario (low M and relatively high N), our model predicts
that Neanderthals should have had a slow or zero rate of cultural evolution as their
population size grew, after an initial burst of relatively rapid cultural evolution when
their population size was small.

The opposite was true in the Upper Paleolithic for anatomically modern humans, who
arguably had the large and flexible cognitive capacity that enables cross-domain
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and metaphorical thinking in today’s humans. As the former reached higher population
sizes, their rate of cultural evolution continued to increase, leading to the explosion in
cultural evolution that heralded behavioral modernity. This echoes the conclusion of Powell
et al. (2009), who showed that behavioralmodernity arrived in European human populations
as population sizes grew on that continent.

We can also address the question of what predicts toolkit complexity in modern
hunter-gatherer groups. Here, the cognitive capacity,M, is high, but the population size
of such groups may be quite low, and the rate of cultural evolution and the
amount of accumulation will be dominated by the rate of innovation or the
population size rather than the interaction between cognition and population
size, as suggested above for Neanderthals. If innovation rate is a major deter-
minant of the rate of evolution in small groups of modern humans, we might
expect to see correlations among the rate of evolution, cultural accumulation,
and environmental factors affecting innovation, both historical and recent, and a
weaker correlation with demographic factors except where the environment is
similar for all populations, as in Kline and Boyd (2010).

This may provide a clue to the possible course of events in Tasmania, where
seemingly adaptive cultural traits were lost when the Tasmanian Aboriginals were cut
off from mainland Australia at the start of the Holocene. Read (2006) suggested
that this loss of cultural complexity was an adaptive response to environmental
pressures, and our model tentatively suggests that the low population size and
high cognitive capacity of the Tasmanians would cause the rate of cultural
evolution in terms of either loss or accumulation of traits to depend on
environmental factors affecting innovation. Our numerical simulations further
suggest that the decline in population size, not the low population size per se,
could have caused rapid cultural loss (Fig. 3). This draws attention to one
important, albeit difficult to model, aspect of this debate that has been
neglected, namely, the importance of non-equilibrium situations and historical
contingency. Previous mathematical models have assumed both a static popula-
tion size and equilibrium levels of culture.

Further, we speculate that modes of cultural transmission that support rapid
cultural evolution (such as best-of-k transmission) were less likely to have been
a strong feature of Tasmanian learning, as these would have mitigated the loss
of cultural traits in a way that other mechanisms (such as random oblique
learning) might not. Evidence for the use of either of these transmission modes
in any human population is scarce, but Henrich and Broesch (2011) suggest
that other, more complex transmission rules, such as prestige bias, may be
widely used.

Finally, it is interesting to consider the relevance of our model to recent experimental
micro-society studies on cultural accumulation (Derex et al. 2013; Muthukrishna
et al. 2013), which showed that the generation and maintenance of cultural
diversity within the micro-societies depended on population size. The problem
addressed by these studies differs in scale and scope from our simulations and
population-wide statistical analyses. Although the experimenters considered just
a single task, the number of possible innovations a participant could generate
within the confines of that task was probably quite high. The population sizes,
however, were relatively small (up to 16 in Derex et al. 2013, for example);
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hence, the diversity within the set of task solutions increased with population
size, as in our simulations when N is low relative to M.

Our analysis suggests that previous theoretical and empirical findings showing a
strong relationship between cultural accumulation and demographic factors such as
population size are not, as previously thought, incompatible with the findings from
statistical analysis of cultural data, which indicate that cultural accumulation in modern
hunter-gatherers depends on environmental factors such as above-ground productivity.
A full understanding of the emergence of behavioral modernity, and the cultural
evolution that has followed, depends on understanding and untangling the complex
relationships between culture, cognition, and demography.
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