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The evolution and maintenance of social learning, in competition
with individual learning, under fluctuating selection have been
well-studied in the theory of cultural evolution. Here, we study
competition between vertical and oblique cultural transmission
of a dichotomous phenotype under constant, periodically cycling,
and randomly fluctuating selection. Conditions are derived for
the existence of a stable polymorphism in a periodically cycling
selection regime. Under such a selection regime, the fate of a
genetic modifier of the rate of vertical transmission depends on
the length of the cycle and the strength of selection. In gen-
eral, the evolutionarily stable rate of vertical transmission differs
markedly from the rate that maximizes the geometric mean fit-
ness of the population. The evolution of rules of transmission has
dramatically different dynamics from the more frequently studied
modifiers of recombination, mutation, or migration.

periodic selection | phenotypic polymorphism | modifier theory |
fitness optimum | evolutionary stability

Cavalli-Sforza and Feldman (1) distinguished two forms of
nonparental phenotypic transmission in the context of cul-
tural evolution. Horizontal transmission occurs when a trait is
passed between members of the same generation and is analo-
gous to transmission of an infectious agent. Oblique transmission
to offspring is from nonparental members of the parental gener-
ation. Evolution under either of these is expected to be more
rapid than under purely vertical (i.e., parent-to-offspring) trans-
mission (2, 3).

Oblique transmission occurs via some mechanism of social
learning, which may include imitation or active teaching. There
has been an interesting debate over the past 30 y concerning
the conditions under which social learning would have an advan-
tage over individual learning or vertical (including genetic) trans-
mission. This debate is usually couched in terms of the mode
and tempo of environmental fluctuations that would affect fit-
ness and hence, evolution (4-11). Mathematical analyses of mod-
els of competition between individual and social learning have
generally shown that social learning has an advantage when
the environment does not fluctuate too frequently. However,
when environmental changes are very frequent, individual learn-
ing is favored, while innate (genetic) determination of the trait
does best when periods between environmental change are long
on average.

In some situations, oblique transmission of biological mate-
rial is possible. In bacteria, phenotypes might be determined
by heritable mobile genetic elements, such as phages (12), plas-
mids (13), integrons (14), and transposons (15). Similarly, some
phenotypes are determined by genes that are commonly con-
verted by uptake of foreign DNA (i.e., transformation) (16). In
these cases, inheritance of a phenotype may combine vertical
transmission from the parent cell and oblique transmission from
other cells.

In some animals, transmission of microbes may occur during
sharing or manipulation of food or other consumable resources
during a social interaction. Although transmission of the micro-
biome in humans is likely to be mostly vertical (17), in other
organisms, there is multigenerational food sharing, during which
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symbionts from the parental cohort may be transmitted obliquely
to younger individuals (18). In such cases, fluctuations in the
resource type or availability may have fitness effects that depend
on features of the transmitted microbiome. This ecological per-
spective on community transmission is stressed by van Opstal and
Bordenstein (19), who emphasize the “need to consider the rel-
ative roles of vertical and horizontal transmission of microbial
communities.”

Another perspective on the evolutionary consequences of fluc-
tuating environments (and as a result, fluctuating selection)
derives from the phenomenon of phenotypic switching (20-25).
In these studies, mutation causes the organism to switch pheno-
types (usually treated as haploid genotypes), and the problem
has usually been couched in terms of the optimal rate of muta-
tion in models where the phenotypic fitness fluctuates over time.
These models did not include social learning, and the evolution
was regarded as a mode of bet-hedging against future environ-
mental change. Optimal (that is, evolutionarily stable) mutation
rates depend on many features of the fluctuations (for example,
degree of fitness symmetry, strength of selection, and variance in
the period of fluctuation) (23).

In a recent analysis of evolution under fluctuating selection,
Xue and Leibler (26) allowed an organism to absorb informa-
tion about the distribution of possible environments by learning
the phenotypes of members of its parental lineage from previ-
ous generations. They describe this as “positive feedback that
enhances the probability that the offspring expresses the same
phenotype as the parent” (26). In this formulation, there was
“reinforcement of the parent phenotype” in an offspring, such
as might occur through epigenetic inheritance. Although their
analysis was not couched in terms of oblique and vertical trans-
mission, as defined by Cavalli-Sforza and Feldman (1), we have
been stimulated by their analysis to develop a model in which
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oblique transmission, at a rate dependent on the trait frequency
in the parental generation, occurs in addition to classical ver-
tical transmission. We then ask how fluctuations in selection
interact with the rate of oblique transmission to affect evolu-
tionary dynamics and how the rate of oblique transmission itself
might evolve.

In our formulation, both the parental phenotype and the dis-
tribution of phenotypes in the whole population contribute to an
offspring’s phenotype. Using conventional modifier theory (27),
we show that, in a symmetric cyclic selection regime with cycles
of periods 1 or 2, an allele reducing the rate of vertical trans-
mission is expected to increase in frequency when rare and in so
doing, to increase the mean fitness of the population. However,
for cycles of greater length or period asymmetry, interesting non-
monotonicities emerge both in the uninvadable rate of vertical
transmission and in the rate that maximizes the geometric time
average of the population mean fitness, which we will refer to
as the “geometric mean fitness.” We develop the models in very
large populations with cyclic selection and with random fitness
and also in the case where drift occurs via sampling from gener-
ation to generation in a finite population.

Model

Consider an infinite population whose members are character-
ized by their phenotype ¢, which can be of two types, ¢ = A or
¢ = B, with associated frequencies z and (1 — ), respectively.
We follow the evolution of z over discrete nonoverlapping gen-
erations. In each generation, individuals are subject to selection,
where the fitnesses of A and B are wa and wpg, respectively.

An offspring inherits its phenotype from its parent via vertical
transmission with probability p and from a random individual in
the parental population via oblique transmission with probabil-
ity (1 — p). Therefore, given that the parent phenotype is ¢ and
assuming uniparental inheritance (28), the conditional probabil-
ity that the phenotype ¢’ of the offspring is A is

r_ _JA=pz+p ifep=A
p=alp={0 Pt R0Zh
where x = P(¢ = A) in the parent’s generation before selection.

Therefore, the frequency z’ of phenotype A after one genera-
tion is given by the recursion equation

' =pta+(1-p)
w

(2]

w w

=2s[(1-p)z+p]+—=01-2)[(1-p)a],

w w

where w is the mean fitness, namely
w=waz + wp(l—1z). [31

Eq. 2 can be rewritten as

2=z [1+p(1fﬁ)u

[4]

21— p)(wa— wp) + pwa+ (1 - phus
z(wa — wp) + wp ’

=T

In what follows, we explore the evolution of the recursion Eq.
4, namely the equilibria and their stability properties, in the cases
of constant environments and changing environments.

Constant Environment. When the environment is constant, the fit-
ness parameters w4 and wp do not change between generations,
and we have the following result.

Result 1. If 0<p<1 and both wa and wgp are positive with

wa E=wg, then fixation in the phenotype A (B) is globally stable
when wa > wp (wa < wg).

20f 10 | www.pnas.org/cgi/doi/10.1073/pnas.1719171115

Proof: If we rewrite Eq. 4 as 2’ =z - f(z), it can be seen that
f(1)=1,andforp>0and0<z <1,

f(z)>1 when wa>wsg, 5]
f(z)<1 when w4 <wg.

Hence, as w4 > 0 and wp > 0, both fixationsin Aorin B (z* =1
for fixation in A and z* =0 for fixation in B) are equilibrium
points of Eq. 4. Moreover, if z; is the value of z at the ¢th gen-
eration (¢=0,1,2,...), from Egs. 4 and 5, we have, for any
O<m<landallt=0,1,2,...,

when wa > wg,
when wa < wg,

Ti41 > Tt 6
T4+1 < Tt 61

and since " =1 or z* = 0 is the only equilibrium point, we have

forall 0 < 2o <1,
forall 0 <mzp <1,

when wa > wg,
when wa < wp.

limtﬁooxt = 1,
limy oo =0,

[7]

Therefore, fixation of the favored phenotype is globally stable.

Periodically Changing Environment. Suppose the environment
changes periodically, such that the favored phenotype changes
after a fixed number of generations. Simple examples are
A1B1=ABABAB...,in which the favored phenotype switches
every generation, or A2B1=AABAABAAB. .., where every
two generations, in which selection favors A, are followed by a
single generation, in which selection favors B. In general, AkBI
denotes a selection regime, in which the period is of (k + ) gen-
erations, with k£ generations favoring phenotype A followed by /
generations favoring B.

Let W be the fitness of the favored phenotype and w be that
of the other phenotype, where 0 < w < W. Rewrite Eq. 4 as
z’' = Fa(z) = zfa(z) when A is favored and ' = Fp(z) = zfs(z)
when B is favored. Then,

z(1=p) (W —w)+pW+(1—-plw
z(W—-w)+w
W —w
Wz +w(l—1z)’
fB(x):x(l—p)(w—W)—I—pw—i—(l—p)W
z(w— W)+ W
w— W
wz+ W(l—x)

Ja(z)=

=1+p(1-2)
[8]

=1+p(1—2)

If z; denotes the frequency of the phenotype A at generation ¢
starting with o initially, then as we are interested in the values
of z; for t=n(k+1) with n=0,1,... at the end of complete
periods, we can write

L) (k) = F (Zn+n)s n=0,1,2,..., 91
where F' is the composed function
F=FpoFpo---oFgpoFs0F 0---0Fy. [10]
I times k times

Clearly, since F4(0)=Fp(0)=0 and F4(1)= Fp(1) =1, both
fixations in A or in B are equilibrium points. An interesting ques-
tion is when these fixations are locally stable. We concentrate on
z* =0, the fixation of the phenotype B. As ' = Fa(z) = zfa(z)
for k generations and ' = Fp(z) = zfp(z) for | generations, the
linear approximation of F(z) “near” z =0 is

F(z) = [fa(0)] " [f2(0)] 'z. [11]

Ram et al.
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Hence, the local stability of z* =0 is determined by the prod-
uct [f4(0)] k[ 5(0)] Lar=0is locally stable if this product is less
than one and unstable if it is larger than one.

From Eq. 8, we have

BO)=14p7 0 =142

[12]

We start with the case k = I.
Result 2. If k=1and 0 <w < W with 0 < p <1, fixation of B is

unstable.
Proof: The local stability of z* = 0, the fixation of B, is deter-

mined by the product
—w w—W\]*
1 . 13
) < TP ﬂ [13]

w)’

w W —
[14]

[A(O)]k[B(O)]’“:KHpW
Observe that
e

W_
<1+p

Since 0 < p< 1 and 0 < w < W, fixation on B is unstable.

Conclusions.

i) Since k =1 and the above result also holds when 0 < W < w,
there is total symmetry between the two fixations in A and B,
and fixation in A is also unstable. Thus, neither phenotype can
be lost, and there is a protected polymorphism (29).

ii) For general k, I, the condition for local stability of fixation in
Ais

[£4(0)] ' [f5(0)]* <1, [15]

and that of B is

[fa(0)] " [f2(0)] ' < 1. [16]

Therefore, following Result 2,

(0] [f2(0)] ' > 1, [17]

and it is impossible that both fixations are stable. Furthermore,
since by Eq. 12, f4(0) >1 and 0 < fp(0) <1 when 0 < w < W,
by choosing k£ and [ appropriately, fixation on A or fixation on
B (but not both) can be stable. In addition, we can have both
fixations unstable giving the following result.

Result 3. With 0 < p<1and 0 <w < W in the case of AkBI peri-
odically changing environments, both fixations may be unstable,
producing a protected polymorphlsm

Proof: Let a=1+p¥=% and b=1+p2=%  and our as-
sumption entails ¢ > 1 and 0<b< 1. Following Eq. 11, fixation
in B is unstable if a* ' > 1, and similarly, fixation in A is unstable
if a'b* > 1. Therefore, both fixations are unstable if

a*b'>1 and a'b*>1 [18]
or equivalently, if

kloga+llogb>0 and [loga+ klogb>0. [19]

Ram et al.

Now the inequalities of Eq. 19 hold if and only if

log(1/b) log a
k log a <l<k10g(1/b).

These inequalities are consistent if and only if log(1/b) < log a
(i.e., ab > 1), which is true by Eq. 14.

The linear approximation of F'(z) near z* =0 (Eq. 11) does
not depend on the order in which phenotypes A and B are
favored within a cycle of k + [ generations. Therefore, the local
stability properties of the two fixations depend only on the fact
that, in a cycle of (k4 ) generations,A is favored & times and
B is favored [ times and not their order in the cycle. When nei-
ther fixation in A nor that in B are stable, there is a protected
polymorphism, and we expect to have one or more polymorphic
equilibria. Fig. S1 illustrates the relationship between &, ! and p
that gives polymorphism of A and B, or fixation, for different
valuesof s= W — w.

For the simple case of A1B1 periodically changing environ-
ment, we have the following.

[20]

Result 4. In the case A1B1 with 0<p<1 and O0<w< W,
the two fixations are unstable, and there exists a unique stable
polymorphism.

Proof: Let z be the initial frequency of A and z’ be its
frequency after one cycle of A1B1 selection. Then, z’'=
Fp(Fa(z)), where, by Eq. 8,

z(1—p) (W —w)+pW+(1—pw

Fa(z)=x (W —w) +w ) -
FB(y):yy(l—p)(w— W)+pw+(1-pW
ylw— W)+ W '

The equilibrium equation is z = Fp(Fa(z)), which reduces to
a fourth degree polynomial equation in z. Since the fixations in
B and A are equilibria corresponding to the solutions z =0 and
x = 1, the other equilibria correspond to solutions of a quadratic
equation Q(z) = azz? 4+ a1z + ap =0, with e = 1 and

W +w —w

M) T ey
AsO<p<land0<w< W, we have
—w
WO = <
W [23]

Also, as a2 =1 and ag <0, the quadratic equation ((z)=0
has two real roots, one negative and one positive z*, satisfying
0 < z* < 1. The latter determines a unique polymorphism. Let

H(z)=Fg(Fa(z)). Then,
H(0)=0, H(z")=2z", H(1)=1. [24]
Also,
by 221 = p)(W —w)? + 2zw(l — p)(W — w) + w[pW + (1 — p)u]
Fu(z)= - )
[z(W — w) 4 w]
[25]
and
Fp(z)

(1= p)(w = W)* +22W (L — p)(w — W) + Wlpw + (1 — p) W]
[z(w — W)+ W]? '

[26]

PNAS Early Edition | 3of 10

2
=]
=
=
-
o
>
w


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental

L T

z

1\

BN AS  DNAS P

From our assumptions on p, w, and W, we have F’(z) >0 for
0 <z < 1. Observe that the numerator of F(z) is linear in p; its
value when p=11is wI¥ > 0, and when p=0, it is

22 (w— WP +2zW(w— W)+ W>=[z(w— W)+ W]*>0.
[27]

Hence, Fp(z)>0 for all 0<z <1, and H'(z)=Fp(Fa(z))
F)(z) is positive when 0<z <1. Thus, H(z) is monotone
increasing for 0 <z <1; H(z) >z is monotone increasing for
0<z<z*,and H(z) < z is monotone increasing for z* < z < 1.
Starting from any initial value 0 < zp <1, we have =, — 2™ as
t —o0. Fig. S2 A, C, and E illustrates how the frequency of A
changes over time in the A1B1 regime of cycling selection.

For more general cyclic fitness regimes, the polynomial that
gives the equilibria is of higher order, and it is conceivable that
more than one stable polymorphism could exist for given values
of p, W, and w. We have been able to show that, when neither
fixation in A nor fixation in B are stable, in the AkBk case, this
cannot occur. In fact, we have the following.

Result 5. In the AkBE selection regimes, if the fixations in A and B
are locally unstable, a single stable polymorphic equilibrium exists.

The proof of Result 5 is in SI Text. Fig. S34 shows the sta-
ble equilibrium frequencies z* as a function of p, W, and w
in the A1B1 regime. For AkBk selection regimes from k=1
to k=40, Fig. S4 illustrates the convergence to a single stable
polymorphism.

We have not been able to prove that, for selection regimes
AkBI with [ #k, there is a single stable polymorphic equilib-
rium when the two fixations are unstable. However, the numeri-
cal examples in Fig. S1 for AkBI and in Fig. 1 and Fig. S5 for the
special case A1B2 all exhibit a single stable polymorphic equi-
librium when fixations in A and B are unstable. These numerical
results suggest that, for W > w >0 and 0 < p < 1, the high-order
equilibrium polynomial has only a single root corresponding to a
globally stable polymorphism. Fig. S6 shows that this is the case
for the A3B10 regime.

Randomly Changing Environment. We now consider the case
where the environment changes according to a stochastic pro-
cess. Without loss of generality, assume that the fitness param-
eters at generation ¢t (t=0,1,2,...) are 1+ s, for phenotype
A and 1 for phenotype B, where the random variables s; for
t=0,1,2,... are independent and identically distributed. Also
assume that there are positive constants C' and D, such that
P(-1+C<si<D)=1.

Corresponding to Eq. 4, with wqs=1+s; and wp =1, the
recursion equation is

1+ psi+z(1—p)s;
1+33t3t

t=0,1,2,.... [28]

Tt4+1 = Tt

As {z:} for t=0,1,2,... is a sequence of random variables, the
notion of stability of the two fixation states needs clarification.
Following Karlin and Lieberman (30) and Karlin and Liberman
(31), we make the following definition.

Definition: “Stochastic local stability” is defined as follows. A
constant equilibrium state z™* is said to be stochastically locally
stable if, for any e > 0, there exists a § > 0, such that |zp — z*| < d
implies

P(lim xtzx*)zks. [29]

t—o0

Thus, z* is stochastically locally stable if for any initial zo suffi-
ciently near z* the process z; converges to z* with high proba-
bility.

40f10 | www.pnas.org/cgi/doi/10.1073/pnas.1719171115
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Fig. 1. Stable frequency of phenotype A and geometric mean fitness in
selection regime A1B2 as a function of the vertical transmission rate p and
the fitness of the disfavored phenotype w. (A) Stable frequency of phe-
notype A at the end of each three-generation cycle. (B) Geometric aver-
age of the stable population mean fitness over the three-generation cycle:
(w* - w** . w***)'/3_ Gray contour lines join p and w combinations that
result in the same stable value. In all cases, W = 1.

In our case, there are two constant equilibria z* =0and z* =1
corresponding to fixation in B and A, respectively. We can char-
acterize the stochastic local stability of these fixations with the
following results, and proofs are in SI Text.

Result 6. Suppose FE [log(1+ ps:)]>0. Then, z*=0, the fixa-
tion of phenotype B, is not stochastically locally stable. In fact,

Result 7. Suppose Ellog(1+ ps:)] <0. Then, ™ =0, the fixation
of phenotype B, is stochastically locally stable. In particular, if
E(st) <0, ™ =0is stochastically locally stable.

Using the general notation for the fitness parameters w4 and
wp, the stochastic local stability of fixation in B is determined

by the sign of [log (1 —p+ p“’—g)], and that of fixation in A is

determined by the sign of £ [log (1 —p+ P%)]- For example,

if the sign of the first is negative, fixation in B is stochastically
locally stable, and when it is positive, with probability of one,
convergence to fixation in B does not occur. It is also true that, if
E(wa/wgp) <1, then fixation of B is stochastically locally stable.
Following Eq. 14, for all realizations of wa and wg,

log (1—p+pz—2)+log (1—p+p%§)>0. [30]

Ram et al.
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Fig. 2. Stochastic local stability. The figure shows the frequency of phe-
notype A after 10° generations in a very large population evolving in a
stochastic environment (Eq. 28). The fitnesses of phenotypes A and B are
wa =1+s: and wg =1, respectively, where s; is s with probability p and
—s with probability 1 — p. The gray lines mark combinations of p and s
for which E[log(1 — p-‘rp';vv—:)] =0 and E[log(1 — p+p:—i)] =0. According
to Result 6, between these lines, fixation of either phenotype is not stochas-
tically locally stable, and we expect a stationary polymorphism between the
lines. Here, initial frequency of A is xo = 1/10, 000, and the vertical transmis-
sion rate is p=0.1.

Therefore, as in the case of periodically changing environments
AkBI, it is impossible that both fixations are simultaneously
stochastically locally stable. It is possible, however, that neither
fixation is stochastically locally stable, in which case, we expect
the population to converge to a polymorphic distribution. Fig.
2 illustrates how the properties of s; in Eq. 28 affect the fre-
quency of phenotype A and in particular, the stochastic local
stability of fixation in phenotype B. Fig. 3 shows the dynamics
of the frequency of A in a case where w4 and wp are identi-
cally distributed and independent; in this case, the expectation
of the stationary distribution is %, and its variance increases as p
increases.

Evolutionary Stability of Oblique Transmission

An interesting question concerns the evolution of oblique trans-
mission itself. For example, is there an evolutionarily stable rate
of oblique transmission? To answer this question, we use a mod-
ifier model, in which we suppose that the vertical transmission
rate is controlled by a genetic locus with two possible alleles
m and M. Let the vertical transmission rates determined by m
and M be p and P, respectively. Thus, there are four pheno-
genotypes: mA, mB, MA, and MB, with frequencies that, at a
given generation, are denoted by z1, z2, 3, and x4, respectively.
As the fitnesses are determined by the two phenotypes A and B
and the modifier locus is selectively neutral, we have the follow-
ing table:

pheno-genotype mA mB MA MB
frequency T 2 z3 T4 [31]
fitness wA  wWB WA WB
vertical transmission rate ~ p p P P

Following the rationale leading to Eq. 2, the next generation
pheno-genotype frequencies 1, =3, 73, and z; are

Ram et al.

wai =wazi [(1—p) (21 + 23) + p] + wpz2(1 — p) (21 + 23)
Wy =wazi (1 — p) (22 + 21) + w2 [(1 = p) (22 + 24) + p]
WG = WAT3 [(1 — P)(m1 +133) + P] + wpma(1— P)(m1 + 23)
Wy =wazs(1l — P) (22 + z4) + wpas [(1 — P) (22 + 24) + P],
[32]
with w, the mean fitness, given by
W= wa(z + 23) + wp (22 + 24). [33]

Note that, under these assumptions, the M /m locus and the
A/ B phenotypic dichotomy do not undergo anything analogous
to recombination, which might be introduced if A/B phenotypes
were viewed as haploid genetic variants.

Starting with a stable equilibrium, where only the m allele
is present, we check its external stability (27, 32) to invasion
by allele M. A constant environment always leads to fixation
of the favored type, independent of p. We, therefore, assume
changing environments and in particular, the simple case of the
A1B1 cycling environment, where a unique stable polymorphism
exists and depends on p (SI Text has a computational analysis of
the general AkBI case). Specifically, from Eq. 32 with wa = W,
wp = w in the first generation and wa = w, wp = W in the sec-
ond generation, after two generations, we have

2" = Tz(Tiz), [34]

where the nonlinear transformation z’ = Tz is given by Eq. 32
with wa = W, wp = w and the nonlinear transformation z’’ =
Toz' is given by Eq. 32 with wa = w, wg = W. Here, z, z’, and
z" are the frequency vectors.

For the A1B1 case, when only the m allele is present with
associated rate p, 0<p<1, and 0 <w < W, a unique stable
equilibrium z* = (z7,1—2,0,0) exists. z; is the only posi-
tive root of the quadratic equation Q(z) = a2z> + a1z + g =0,
with ae, a1, ap specified in Eq. 22. Solving Q(z) = 0 gives

1 W—|—w—\/(1—p)2(W—w)2—|—4Ww

g 2 =)W —w) o 13
and it can be seen that
vV Ww —w P |

10° 4
X 107" 4
I, P
©10°4 — 05
o) — 041
c -3
& 10°4 — o001
=]
> —— 0.001
2107
107
T T T T T T 1
10° 10" 10° 10° 10* 10° 10° 107

Generations

Fig. 3. Effect of vertical transmission rate p on phenotype polymorphism
in a randomly changing environment. Dynamics of the frequency of phe-
notype A over time starting at xo = 10~> when the fitnesses of phenotypes
A and B are identically and independently distributed random variables. As
the vertical transmission rate p increases from 0.001 to 0.5, the frequency
reaches a polymorphic distribution with E(x¢) — 0.5 faster, but the variance
also increases. The fitnesses of phenotypes A and B, wa and wp, respectively,
are both exponential random variables with expected values of two.
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Fig. 4. Consecutive fixation of modifiers that reduce the vertical transmission rate in selection regime A7B1. The figure shows results of numerical simula-
tions of evolution with two modifier alleles (Eq. 32). When a modifier allele fixes (frequency > 99.9%), a new modifier allele is introduced with a vertical
transmission rate one order of magnitude lower (vertical dashed lines). (A) The frequency of phenotype A in the population over time. (B) The frequency of
the invading modifier allele over time. (C) The population geometric mean fitness over time; Inset zooms in to show that the mean fitness increases slightly
with each invasion. Invading alleles are introduced at frequency 0.01%; whenever their frequency drops below 0.01%, they are reintroduced. Parameters:
vertical transmission rate of the initial resident modifier allele, po = 0.1; fitness values: W =1 and w = 0.5. The x axis is on a log scale, as each sequential

invasion takes an order of magnitude longer to complete. Fig. $12 shows w =0.1 and 0.9.

The external stability of z* to the introduction of the modifier
allele M with rate P is determined by the linear approximation
matrix L. We prove the following result in SI Text.

Result 8. L has two positive eigenvalues, and

i) when P > p, the two eigenvalues are less than one;
ii) when P < p, the largest eigenvalue is larger than one; and
iii) when P = p, the largest eigenvalue is one.

We conclude that, in the A1B1 selection regime, an allele
m producing vertical transmission rate p is stable to the intro-
duction of a modifier allele M with associated rate P if P > p,
and it is unstable if P < p. Thus, in this case, evolution tends
to reduce vertical transmission and hence, increase the rate of
oblique transmission, and there is a reduction principle for the
rate of vertical transmission (27, 32). The evolutionary dynamics
of the reduction in p under the A1B1 cycling regime are shown in
Fig. 4, which also illustrates the change in phenotype frequencies
over time.

In the case of identically distributed random fitnesses wa
and wp, Fig. 5 shows an example of the success of modi-

ical details) are recorded in Table 1 for different values of w
relative to W = 1. Interestingly, with w =0.1, the evolutionar-
ily stable value of p is zero for the A1B2 regime but not for
the A3B10 and A5B30 regimes, in which the only stable val-
ues are those that lead to fixation of phenotype B (e.g., p >
0.4625 and p > 0.1489, respectively); these are, therefore, neu-
trally stable (Fig. S10). AkBF results are plotted in Fig. 6B. In the
A2B2 regime, p* =0, and there is reduction of vertical transmis-
sion for all selection values tested. However, for AkBk regimes
with k> 2, we find p* #0, and depending on w, p* can be as
high as 0.95. In Table 1, blank values for p* indicate that our
method was numerically unstable and that a precise value for
p* could not be obtained. This is why, in Fig. 6B, no p* points
are shown for AkBk with k> 19. In Table 1, the word “fixa-
tion” indicates that fixation of B occurs, at which point there
can be no effect of modification of p; p* cannot be calculated in
such cases.

fiers that reduce p. We have not, however, been able to prove - Rate
that there is a reduction principle for this class of fluctuating & o - 0.01 | |
fitnesses. T o — 0.001 3 3
Values of the evolutionarily stable vertical transmission rate, =~ 9 > 0517 ) } }
p*, for some AkBI examples (SI Text and Fig. S10 have analyt- £ @ —— 0.0001
u= | |
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Geometric Mean Fitness and Rate of Vertical Transmission

Under fluctuating selection, the geometric mean fitness of geno-
types has been shown to determine their evolutionary dynamics
(8,30, 33). For the evolution of mutation rates that are controlled
by genetic modifiers, the stable mutation rate and the mutation
rate that maximizes the geometric mean fitness of the population
seem to be the same when the period of environmental fluctu-
ation is low enough (24). We can ask the same question here:
is the stable rate p* the same as the rate p that maximizes the

, X
5

phenotype A
o
o

w Frequency of »

= O
o o

e Adhe A

o
o

T BRI i T
10" 10° 10° 10’

Generations

-
o
-
o

Fig. 5. Consecutive fixation of modifiers that reduce the vertical transmis-
sion rate p under symmetric randomly changing selection. The figure shows
results of numerical simulations of evolution with two modifier alleles (Eq.
32). When a modifier allele fixes (frequency > 99.9%), a new modifier allele
is introduced with a vertical transmission rate one order of magnitude lower
(vertical dashed lines). (A) The frequency of phenotype A in the population
over time. (B) The frequency of the invading modifier allele over time. Invad-
ing alleles are introduced at frequency 0.01%; whenever their frequency
drops below 0.01%, they are reintroduced. Parameters: vertical transmis-
sion rate of the initial resident modifier allele is pg = 0.1, and the ratio of
fitness values is wa /wg = 10 with probability 0.5 and wa /wg = 0.1 also with
probability 0.5. The x axis is on a log scale, as each sequential invasion takes
an order of magnitude longer to complete.
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Table 1. Values of p* (stable p) and p (optimal p)

k ! {w} p* 2
1 1 0.1 0.000000 0.000000
1 1 0.5 0.000000 0.000000
1 1 0.9 0.000000 0.000000
1 2 0.1 0.000000 0.00065
1 2 0.5 Fixation Fixation
1 2 0.9 Fixation Fixation
2 2 0.1 0.000000 0.000000
2 2 0.5 0.000000 0.000000
2 2 0.9 0.000000 0.000000
3 10 0.1 >0.4265 0.00031
3 10 0.5 Fixation Fixation
3 10 0.9 Fixation Fixation
5 30 0.1 >0.1489 0.00027
5 30 0.5 Fixation Fixation
5 30 0.9 Fixation Fixation
12 12 0.1 0.84924 0.24347
12 12 0.5 0.91209 0.000000
12 12 0.9 0.95686 0.000000
20 20 0.1 0.223925
20 20 0.5 0.94643 0.000000
20 20 0.9 0.98304 0.000000
30 30 0.1 0.193280
30 30 0.5 0.96331 0.000000
30 30 0.9 0.99136 0.000000
50 50 0.1 0.15419
50 50 0.5 0.9768 0.22107
50 50 0.9 0.99581 0.000000

p* is the uninvadable value of the vertical transmission rate. p is the rate
that maximizes the geometric mean fitness at the stable equilibrium of the
AkBI cycle.
fNote that W =1.

equilibrium value of the geometric mean fitness under fluctuat-
ing selection? For the A1B1 selection regime, we have the fol-
lowing result.

Result9. If W > wand 0 < p <1, then the mean fitness at the sta-
ble equilibrium in the A1B1 environment is a decreasing function
of p.

Proof: In A1B1, the stable frequency of phenotype A is, by
Eq. 35,

L WHw-Z
TS T (Wow) 1371

where Z = \/(1 —p)?(W —w)®> +4Ww >0. The geometric
mean fitness at the stable equilibrium is w* - w™*, where w** is
the mean fitness at the middle of the A1B1 cycle; in this case
w*=w"" due to the symmetry between the two phenotypes A
and B, which allows us to reduce the problem to properties of w*.
Now, because W > w, w" is an increasing linear function of z*:

w=r'W+Q-—zYw=z"(W—-w)+w. [38]

Thus, w™ is decreasing in p if dz*/dp is negative. Using Eq. 37,

dr*  (1—p)(W —w) W+w—27

dp * 21(2—/))2 2-pW-w) o
_r o5 (A=p(W—-w)
2—p 212-p)Z

From Eq. 36,0 < 2" < %, and therefore, dz* /dp < 0, which com-
pletes the proof.

Ram et al.

Fig. 4 illustrates the increase over time of the geometric mean
fitness with decreasing p at a polymorphic equilibrium in the
A1B1 regime. The values of p and p* are the same in A1B1
and A2 B2 regimes, namely both are zero. Fig. 1B shows the geo-
metric mean fitness in the A1B2 regime, and we see that, for
small values of w, this mean fitness increases as p decreases.
At w=0.1, Table 1 shows that p and p* are roughly zero. In
all AkBk regimes that we tested with w=0.9, the value of p
was also zero, substantially different from the values of p*, as
shown in Fig. 6. Also in Fig. 64, we see that, with w=0.1, p
changes from zero to positive in the AkBk regimes with k > 12,
while with w = 0.5, the change occurs at £ =31. In Fig. 6, with
w=0.1, p is between 0.15 and 0.24 for 12 < k < 50, while with
w=0.5, p exceeds 0.2 for 31 <k <50. More details on the mis-
match between p*, which cannot be invaded, and p, which maxi-
mizes geometric mean fitness, are given in Table 1, Figs. S7 and
S8, and ST Text.

Finite Population Size

To include the effect of random drift due to finite population
size in the above deterministic model, we use the Wright-Fisher
model. Let X; denote the number of individuals with phenotype
A in a population of fixed size N at the t¢th generation, and sup-
pose that X; = Nz. Also, let ' represent the frequency of the
phenotype A in the infinite population model in the next gener-
ation, namely (Eq. 2)

A

"Optimal" rate, p
o
o

©
B
L

o
o
L

*

ol

o -

~ o

[6)] o
1 1

0.50

0.25

Stable rate,

0.00

T
1 10 20 30 40 50
Environment period, k =/

Fig. 6. Fitness “optimal” and evolutionary stable vertical transmission rate
in AkBk selection regime. (A) The vertical transmission rate p that maxi-
mized the geometric average of the population mean fitness is zero (com-
plete oblique transmission) when selection cycles quickly between favor-
ing phenotype A and B and then abruptly transitions to 0.2 followed
by a slow decrease (Figs. S5 and S6 have details on the abrupt tran-
sition). (B) The evolutionary stable rate p* which cannot be invaded
by modifiers with either higher or lower vertical transmission rate P,
rapidly increases from zero when selection cycles are short (k=1 or 2)
to roughly one when selection cycles are longer. The dashed line shows
1— k‘j which fits the values for w=0.5 (41). The values for w=0.1
(blue) could not be calculated for k> 19 due to numerical instability
when selection is strong and the duration between selection fluctuations
is long. In all cases, W =1. S/ Text has details on how we calculated the
stable rate.
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m/:p%z+(1fp)z. [40]

Then, according to the Wright-Fisher model (34), X:4+1, the
number of individuals of phenotype A at generation (¢ + 1), is
determined by the probability

P(Xiy1=7|Xi=Nz) = (]]V) ("El)] (1- ‘E,)N_j [41]

for j=0,1,2,..., N. Thus, the fluctuations in the numbers of
phenotypes A and B in the population of size N are generated
by the Wright-Fisher Markov chain, where, given that X; = Nz,
X;+1 has a binomial distribution with parameters (N, z").

This Markov chain has two absorbing states, X; = N and X; =
0, corresponding to the two fixations in A and B, respectively,
and we are interested in the fixation probabilities and the time
to fixation of these two absorbing states as functions of the initial
frequency z and also of p, wa, and wp. To these ends, we use a
diffusion approximation to the process { X; }, which allows us to
compute u(z), the probability that phenotype A goes to fixation
when its initial frequency is z, namely

1— 672;)51

u(z) [42]

T l—e2s

The expected time to fixation in A starting from an initial fre-
quency of z is given by

T 62ps§ -1 U(I) 1 1— 672ps(17.§)
d d
) et g

T(z) = 1—u(z)

[43]

where u(z) is given in Eq. 42, and in generations, T'(z) is mul-
tiplied by N (the derivation is in SI Text). Unfortunately, the
integrals in Eq. 43 cannot be done in closed form unless ps =0,
inwhichcase u(z) =zand T(z) = —2zlnz —2(1 —z) In(1 — z)
(ref. 34, p. 160), and only numerical computation of 7'(x) is pos-
sible for specified values of z, p, and s.

For the fixation probability u(xz), we have the following result.

Result 10. When s > 0, so that the phenotype A is favored, the fixa-
tion probability u(x) is monotone increasing in p.

The proof of Result 10 is in SI Text. Fig. S9 compares the fix-
ation probability and time to fixation derived numerically from
simulating the Wright-Fisher Markov chain with the diffusion-
derived values of u(z) and T'(z). The fit is seen to be very good.
Note that, when N is large, the Wright-Fisher model exhibits
persistent fluctuation around the deterministic expectation, as
shown by the orange traces in Fig. S2.

We can also develop a diffusion approximation for the case of
a cycling environment. Suppose that selection changes in cycles
of length n, such that, within the cycle, the fitness parameters are
wh, wh for t=1,2, ..., n. Also, let

t
%st:wi—w}g, St:;si, t=1,2,...,n. [44]

Following Karlin and Levikson (35), we have the following result.

Result 11. The mean p(x) and variance o*(z) of the change in the
frequency of A in one generation for the diffusion approximation in
the case of a cycling environment AkBI, where k + [ =n, are

n(z) = pSua(1 - a)

45
o (z)=nz(1—z). (431

80f 10 | www.pnas.org/cgi/doi/10.1073/pnas.1719171115

The proof of Result 11, based on induction on n, is given in SI Text.

Using the moments in Eq. 45, the fixation probability «(z) and
the expected time T'(z) to fixation from an initial frequency of =
can be computed, where s is replaced by s, /n. We find

S,
1—e 2050

u(z) = ) [46]

S
1—e 207

and T'(z) can be computed similarly.

In the case of the AkBI cycling environment, we write n =k +
[, and if wa = W, wp = w for k generations and w4 = w, wp =
W for [ generations, we have

Sn =Sk =Nk —1)(W —w). [47]

Fig. 7 shows an example of how (k — ), p, and (W — w) in Eq. 46
for u(z) interact to affect fixation probabilities. More examples
are illustrated in Fig. S11.

Discussion

Nonchromosomal modes of phenotypic transmission are receiv-
ing increasing attention (36-38), especially with respect to their
potential role in adaptation and maintenance of diversity (39).
Here, we have focused on a dichotomous phenotype transmit-
ted through a combination of parental and nonparental trans-
mission. In addition to the roles that these transmission modes
play in the dynamics of phenotypic diversity in large and small
populations, we have also investigated a genetic model for the
evolution of the transmission mode itself.

Our model differs markedly from that of Xue and Leibler (26),
who took the individual phenotypic distribution (i.e., the proba-
bility that an individual develops one of a set of phenotypes) to
be the inherited trait. In our model, the transmitted trait is the
phenotype itself. Thus, with two phenotypic states A and B, we
track the frequency z of A, whereas Xue and Leibler (26) focus
on the dynamics of the per-individual probability 74 of learning
the phenotype A. One interpretation of our model is as a mean

50
0.6
o
= 2
g 0.4%
8 30 8
é’ 0.3 E—
5 O
IS 20 ‘i
c 2
S 02T
=
c
w
10 0.1
0.0

0.0 0.2 0.4 0.6 0.8 1.0
Vertical transmission rate, p

Fig. 7. Fixation in a finite population with different ratios of selection
periods % Fixation probability of phenotype A when starting with a sin-
gle copy in a population of size N: u(1/N) = (1 — exp(—Zp%(W —w))/(1—
exp(72Np‘;—_’*_;(W — w)) (Egs. 46 and 47). k and [ are the numbers of gener-
ations in which phenotypes A and B, respectively, are favored by selection.
Here, fitness of the favored phenotype is W =1, fitness of the disfavored
phenotype is w = 0.5, and the population size is N = 10, 000. Fig. S11 shows

additional examples.
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value approximation to the model of Xue and Leibler (26), where
z, the state in our model, is the average of the population distri-
bution of individual phenotype probabilities.

In a constant environment, the higher the vertical transmission
rate p, the faster the approach to fixation of the favored pheno-
type: A if wa >wp or B if wp > wa. Here, 1 — p, the oblique
transmission rate, represents the added chance that an offspring
becomes A by learning from the parent’s population after learn-
ing from the parents who have undergone selection (Eq. 2). This
simple phenotypic model does not allow a polymorphism to be
achieved in a constant environment, but with more oblique trans-
mission, approach to fixation is retarded.

With fluctuating environments, the dynamics of the phenotype
frequencies are, in general, much more complicated. In particu-
lar, with deterministically cycling symmetric fitness values (the
AkBIl model), it is impossible for fixation in A and B to both
be stable. If k=1, for example, neither fixation is stable, and
there is a single stable polymorphic equilibrium (with pheno-
types A and B present) (Result 5). In the A1B1 case, this poly-
morphism is globally stable. In the AkBI case, bounds on [/k
that determine the instability of both fixations and hence, the
protection of polymorphism are given by the inequalities of Eq.
20, which depend on both the fitness differences and the rate
p of vertical transmission. We conjecture that, with k = [, there
is a unique stable polymorphism if both fixations are unstable.
This result is similar to the storage effect (40), in which pro-
tection from selection maintains species coexistence: consider
two species, A and B, with overlapping generations, an equal
death rate p, and different growth rates wa and wg; then, Eq.
2 describes the change in frequency of species A. In our model,
oblique transmission can be said to protect the disfavored phe-
notype from selection, because it allows transmission without
reproduction.

In deterministic one-locus, two-allele diploid population ge-
netic models with cycling fitness regimes, Haldane and Jayakar
(33) first showed the relevance of the geometric mean of geno-
typic fitness (compare Eqs. 16 and 17) for the maintenance (or
loss) of polymorphism. However, with equal homozygote fit-
ness, alternating in strength as a two-generation cycle (compare
with A1B1), Karlin and Liberman (31) extended the results of
Haldane and Jayakar (33) and found conditions under which
both allelic fixations and polymorphic equilibrium could all be
stable, with the evolution depending on initial allele frequencies
as well as the homozygote fitness differences between alternate
generations. Our haploid model does not seem to produce such
dependence on the initial conditions.

When the fitnesses ws and wp are treated as random vari-
ables rather than varying cyclically, stochastic local stability is
the appropriate analog to local stability in the case of cyclic
fitness variation. While fixations in phenotypes A and B can-
not both be stochastically stable in this case, both may be
unstable, and a polymorphic distribution may result. The vari-
ance of this distribution is greater for larger values of p.
This is because the stochastic local stability conditions involve
E{log[1 — p+ p(wa/ws)]}, and the effect of the variance of

-
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(wa/wp) will clearly increase as p increases. In the finite pop-
ulation case, a greater level of vertical transmission makes selec-
tion more effective, increasing the probability u(z) of fixation
and reducing the expected time to fixation.

We have shown that, in the A1B1 case, the rate of vertical
transmission tends to decrease when it is under the control of a
genetic modifier. From numerical iteration, it seems that this is
also true in the random selection case when the fitnesses of A
and B are identically distributed and independent between gen-
erations. However, for AkBI selection regimes more complicated
than A1B1, evolution of a modifier of vertical transmission is
not straightforward. While reduction of p occurs in the A2B2
regime, the uninvadable value p* is not zero for all of the fitness
values explored in AkBk regimes with &k > 2 (Fig. 6B and Table
1). In fact, p™ increases sharply as & increases beyond k = 2. This
is an unusual scenario for genetic modifiers, although it must be
noted that a modifier of p is not neutral; it affects primary selec-
tion, while neutral modifiers of recombination, mutation, and
migration affect induced or secondary selection.

The dependence of the modifier dynamics on the strength
of selection (that is, w when W =1) is complicated by the ap-
proach of the system to fixation. When the phenotype frequen-
cies become exceedingly small, dependence of the dynamics of
the modifier of p becomes extremely difficult to detect due to
numerical instability; this is especially true for larger values of &
in AkBk regimes when w is small (Fig. 6B and Table 1) (with
k> 19).

Fig. 64 (Table 1) shows that the value p that maximizes the
geometric mean fitness is the same as the evolutionarily stable
value p* in the A1B1 and A2B2 selection regimes. For AkBk
regimes with k£ > 2, our numerical analysis shows that / depends
strongly on the strength of selection (i.e., the value of w rela-
tive to W =1). For AkBI regimes with w =0.1, the difference
between p and p* is seen even with the A1B2 environment. For
AkBE regimes and w =0.9, we find p=0, while p* is close to
0.9. For larger values of k, p is between 0.15 and 0.25, while p*
remains above 0.8 and can reach 0.99 for very large k. Compar-
ing Fig. 64 with the asymptotic growth rate (AGR) of Xue and
Leibler (26), whose parameter 7 is the rate at which an individual
learns from its parental lineage, there is a similarity of our curves
for w=0.1 and 0.5 with their curve in the AkBk environment.
They show the AGR decreasing with n in the AkBk regime for
small k, but larger values of & entail that the AGR has a maxi-
mum for an intermediate value of 7.

Although the models of Xue and Leibler (26) and that ana-
lyzed here both incorporate parental and nonparental transmis-
sion, they do so in qualitatively different ways. The model treated
in this paper is squarely in the tradition of gene—culture coevo-
lutionary theory together with modifier theory from population
genetics. The different findings from the two classes of mod-
els are interesting and suggest that additional exploration of the
overlaps and discrepancies between the two approaches would
be worthwhile.
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