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Evidence for interactions between populations plays a prominent role in the

reconstruction of historical and prehistoric human dynamics; these inter-

actions are usually interpreted to reflect cultural practices or demographic

processes. The sharp increase in long-distance transportation of lithic

material between the Middle and Upper Palaeolithic, for example, is seen

as a manifestation of the cultural revolution that defined the transition

between these epochs. Here, we propose that population interaction is not

only a reflection of cultural change but also a potential driver of it. We

explore the possible effects of inter-population migration on cultural evol-

ution when migrating individuals possess core technological knowledge

from their original population. Using a computational framework of cultural

evolution that incorporates realistic aspects of human innovation processes,

we show that migration can lead to a range of outcomes, including punctu-

ated but transient increases in cultural complexity, an increase of cultural

complexity to an elevated steady state and the emergence of a positive feed-

back loop that drives ongoing acceleration in cultural accumulation. Our

findings suggest that population contact may have played a crucial role in

the evolution of hominin cultures and propose explanations for observations

of Palaeolithic cultural change whose interpretations have been hotly

debated.

1. Introduction
Long-distance hominid mobility, which probably correlates with inter-population

connectivity, can be inferred from various aspects of the archaeological record; for

example, transportation of material and artefacts over distances greater than

100 km occurred sporadically in the Middle Palaeolithic and regularly in the

Upper Palaeolithic [1]. This feature of the Upper Palaeolithic revolution is usually

attributed to demographic processes, changes in subsistence strategies or other

cultural shifts [1,2]. We suggest that inter-population connectivity may be more

than a reflection of cultural advancement: it may have been critical in driving
such change. In this study, we explore the cultural dynamics that may result

from population contact.

Connectivity within and between populations has been proposed, in theor-

etical and anthropological studies, to dramatically influence cultural evolution

[3–9]. An experimental human-interaction study showed that groups produce

more complex artefacts than individuals acting alone [10], and several anthro-

pological studies and evolutionary models suggest a relationship between

group size and technological complexity (e.g. [11–13]). In the workplace,

innovations appear more often when members of different groups interact

[14]. Further, experimental groups that independently accumulated traits and

then combined their knowledge made successful innovative combinations not

observed in fully connected groups [15]. Similarly, a recent model simulated
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contact between populations with a continuum of mobility

strategies, from remaining near a home base to constantly

moving, with no home base [16]; the results suggested that

intermediate strategies, which might ensure both regular

contact with new populations and enough contact time

to accurately transmit information, maximized cultural

transmission across population boundaries. From their

archaeological analyses, Stiner & Kuhn [17] suggested that

the connectedness of the Upper Palaeolithic could have

stabilized technological volatility, decreasing risk and

increasing demographic robustness. Along the same lines,

Hovers & Belfer-Cohen [18] proposed that population inter-

connectedness prevents local loss of culture, and that the

Middle Palaeolithic record reflects a pattern of cultural extinc-

tion and re-invention, stemming from instability of

transmission networks. These empirical and theoretical

studies suggest that modelling the effect of inter-population

interactions on overall cultural complexity may be useful in

interpreting the archaeological record of hominid culture.

One of the apparent features of the time trajectory of cul-

ture is that it includes periods of relative stasis that are

separated by bursts of cultural accumulation; these increases

can differ in both time scale and magnitude [19–22]. Previous

explanations for punctuations in the archaeological record

have invoked a cultural reaction to such factors as genetic/

cognitive change in hominids or environmental change that

alters the population’s cultural steady state [21,23–27]. In a

previous study, we proposed that independent innovation

processes can explain cultural bursts: if a cultural advance

facilitates associated innovations and novel trait combi-

nations, then a purely cultural mechanism can trigger a

cascade of related innovations and punctuated cultural

bursts [28].

An alternative driver of punctuation could be sudden

changes in the parameters of cultural evolution, such as

those brought about by modification of the biological carrying
capacity, the number of individuals that the available resources

can support [29]. Thus, a cultural trait, for example a tool or

practice related to agriculture [30,31], could increase food

availability and the biological carrying capacity. The resulting

population growth might correspond to an increased cultural

repertoire, as predicted by experiments, some cross-cultural

analyses and cultural–evolutionary models [11–13,32–40].

Notably, these carrying-capacity-altering cultural shifts can

lead to much greater cultural accumulation [29] than those

induced by a cascade of related innovations in the model

of [28].

Most models of cultural evolution consider the spread

of existing traits, but only a handful explicitly model the

innovation processes that underlie the origin of new traits

[28,41,42]. Some models have addressed the effect of

population structure; for example, migration among sub-

populations may affect the population’s cultural diversity

[37,40,43] and the accumulation of errors [43]. Further,

migration among subpopulations could affect the cultural

repertoire, both because cultural loss is less likely with

access to more cultural models [12] and because rare inno-

vations are more likely to spread throughout the population

[44]. In [44], migration and population size had a greater

effect on pre-equilibrium dynamics than on the cultural equi-

librium of a population, but this analysis examined the skill

level of a finite cultural repertoire as opposed to additions

to a potentially limitless cultural repertoire.

To study the effects of inter-population contact on cultural

dynamics, we develop a theoretical framework that considers

jointly cultural contact, innovation and modifiers of biologi-

cal carrying capacity. Here, populations innovate and

accumulate cultural traits independently, and individuals

migrate between populations bringing the core technologies

invented in their original population, which facilitates

cultural change. In addition, technologies can be combined

to form new tools, and the many novel combinations that

become possible following a migration event may potentially

trigger a burst of innovations. As in real-life human cultures,

the potential number of cultural traits in our model is

theoretically unlimited.

By considering the effects of both population size and

population structure on cultural accumulation, our model

addresses human experimental and archaeological data. In

particular, our model suggests that large-scale punctuation

in the archaeological record can result from an increase in

inter-population connectivity. We explore the possibility

that cultural contact is a primary driver of rapid cultural

change and characterize patterns that would emerge under

different migration regimes.

2. The model
We extend the model of Kolodny et al. [28] to include mul-

tiple populations whose cultures independently innovate

and evolve. We simulate the effects of migration and cultural

interactions between these populations. In the model, we

assume that each individual has some probability of innovat-

ing and of migrating, so the overall rates of innovation and

migration in the population are proportional to population

size. Similarly, we assume that cultural traits are more sus-

ceptible to loss when fewer people know them, so the

overall rate of cultural loss is inversely related to population

size. Finally, we assume that certain rare innovations, such as

those that increase the food supply, can increase carrying

capacity and thus affect population size. Although one

cannot generalize to all human populations from a single

model, a body of empirical and theoretical literature supports

these assumptions (e.g. [11,13,30,34–38,45]).

In the model, three interacting processes contribute to

human tool innovation, as in [28]. The first process produces

ground-breaking large-scale innovations, or lucky leaps,
which occur with probability Plucky per individual per time

step. Each lucky leap innovation facilitates two other tool

innovation processes. First, a number of tools are made

useful by each lucky leap; these are termed toolkit innovations.
There are L toolkit innovations associated with each lucky

leap, where L is sampled from a uniform distribution

U(1,11).

Lucky leap innovations can also combine with other

lucky leap innovations to produce innovative combinations,
which are useful to the population with probability

PcombUseful. With only lucky leaps allowed to combine, this

relatively conservative combination scheme represents the

notion that ground-breaking ideas are often widely appli-

cable to other existing technologies. For simplicity, we

assume that all potentially useful combinations and toolkit

tools are innovated immediately upon the lucky leap’s inven-

tion, which is equivalent to the assumption that an individual

tests more than one combination per time step.
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Several models represent cultural traits as skills and

track variation in individual skill levels [12,13,35,44], and

others track the presence of traits in individual cultural reper-

toires [34,37,40,46]; in these studies, transmission between

individuals is explicitly modelled, and cultural complexity

increases with population size. Here, we build upon these

findings to simplify the transmission process: we track the

population-level presence of traits, as in [36,38], and we

assign a probability that a trait will arise and spread

in the population rather than focusing on individual-level

transmission processes.

Finally, at each time step, tools may be stochastically lost

due to drift. Because the rate of cultural loss is likely to

decrease as the population grows [13], we scale the loss par-

ameter, PSpontLoss, by the population size: PSpontLoss/N. This

loss probability encapsulates numerous possible loss pro-

cesses, including failed transmission between individuals

and fluctuating trait frequencies that may decrease to extinc-

tion by chance. In reality, a certain trait’s probability of loss

depends on many factors, including its ease of transmission,

effect on biological fitness and usefulness in the current

environment [28]; for simplicity, we use the same probability

of loss for all traits. (A similar approximation is found in [36]

and the electronic supplementary material of [38], where

agent-based transmission of knowledge is taken into account.)

This rate of stochastic trait loss is a useful first approximation

that captures how loss might scale with population size and

how even important traits can be lost [13].

When a lucky leap tool is lost, the toolkit and combi-

nation tools associated with it are also lost. Toolkit

innovations and combination tools, however, can be indivi-

dually lost without affecting other tools. These tools may

also be re-invented in later time steps, if the lucky leap

innovations with which they were associated remain in the

population. This occurs with toolkit and combination tools,

respectively, with probabilities PToolkit and PCombine per

individual per time step.

In these agent-based stochastic simulations, each pro-

cess occurs with a given probability per time step; thus,

each run of the stochastic simulation is unique. In the elec-

tronic supplementary material, we also give equations

for the expected effect of each process under simplifying

assumptions.

The framework outlined above is sufficient to produce

punctuated bursts of innovations after periods of stasis, as a

lucky leap innovation can facilitate the relatively rapid

addition of combinations and toolkit innovations [28]. When

tools can be lost as well as added, the mean number of each

type of tool (nlucky, ntoolkit, ncomb) approaches a steady state

(derived in the electronic supplementary material):

n�lucky ¼
N2 � Plucky

PSpontLoss
, ð2:1Þ

n�toolkit ¼
N2 � Plucky � kLl
2 � PSpontLoss

ð2:2Þ

and n�comb ¼
N4 � P2

lucky � PCombUseful

2 � P2
SpontLoss

, ð2:3Þ

where N is the population size and kLl is the mean number of

toolkit innovations associated with each lucky leap tool.

Here, we extend this framework [28] to include the effects

of population size and cultural contact. First, we implement

multiple simulations of the model simultaneously, generating

independent populations that undergo innovation and cul-

tural evolution. (The present framework can simulate many

interacting populations with qualitatively similar results;

figures 1–5 display two or three populations for ease of visu-

alization.) Then, individuals migrate between populations

with probability Pmigrate per time step. An individual enters

a new population carrying with it some fraction, fmigrant, of

the full repertoire of core technologies in its original popu-

lation, i.e. its repertoire of lucky leap innovations and their

associated toolkits. We explored the dynamics of popu-

lation-level subdivision of knowledge in [28]; for simplicity

in this study, in figures 1–4 we set fmigrant ¼ 1, i.e. each

migrant carries its originating population’s full cultural reper-

toire; this does not influence the results qualitatively.

Following migration, the migrant-receiving population can

test many potential combinations between its existing lucky

leaps and the newly arrived lucky leaps. Each of these poten-

tial combinations is useful with probability PcombUseful, which

we set equal to 1 in the following simulations to illustrate the

potential scale of the effects of combining cultures. In reality,

cultural trait combinations are not necessarily useful but are

also not restricted to combinations of large-scale lucky leap

innovations.

To consider separately the effects of migration and the

effects of changes in population size, we assume that a

migration event occurs according to a Moran model [47],

with no change in size of either population: the migrant

can be thought of as replacing a randomly chosen individual

who died in the population it is joining, and its place in its

original population is filled by a newborn individual.

Lucky leap innovations that occur independently in different

populations are assumed to be distinct, so two populations

will initially have no tools in common. An individual from

population 2 who joins population 1 brings population 2’s

lucky leap innovations and their associated toolkits. Once

this occurs, a lucky leap that originated in population 2 can

be combined with lucky leaps in population 1. For example,

combining tool A from population 1 with tool B that origi-

nated in population 2 would lead to the combined tool AB.
Also, all combinations of innovations A and B are identical

to one another, even if the process that combined them

occurred independently in different populations or occurred

in a different order (BA ¼ AB).
In human history, fortuitous innovations enabled

increases in carrying capacity, resulting in population

growth [30,31], which then likely facilitated larger cultural

repertoires. We include this possibility in our model: with

probability PIncreaseCarryingCapacity, each new combination

increases the biological carrying capacity of the population.

If this stochastic event occurs at time t, the population size

(N ) increases by a factor of C, sampled from a uniform distri-

bution U(1.1,1.2): Ntþ1 ¼ Nt .C. As PIncreaseCarryingCapacity acts

on each new combination, carrying-capacity-altering traits

are likely to arise when two cultures are connected by

migration. We hypothesize that carrying-capacity-altering

traits are resistant to cultural loss because the effects of

losing the behaviour (for example, less available food) will

quickly put pressure on the population to reintroduce it.

Thus, carrying-capacity-altering combinations are placed in

a distinct category of tools with their own loss probability,

which we set to zero in the results presented below.
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3. Results
3.1. The effect of population size on the cultural

repertoire
As each individual may invent a novel tool with some prob-

ability, the rate of tool accumulation increases with

population size. This accords with most models of cultural

evolution, despite different approaches [12,37,39–41,46,48].

Loss of tools in our model is not implemented explicitly as

a result of failed cultural transmission. To approximate tool

loss, we implement directly the main qualitative finding of

previous models with explicit transmission processes: a

tool’s probability of loss is inversely dependent on the popu-

lation size, because additional tool users decrease the

likelihood of failed transmission [28,36,38]. The combination

of innovation and loss in our model leads to a nonlinear

relationship between repertoire size and population size

(equations (2.1)–(2.3)): repertoire size scales with N2 for

lucky leap and toolkit innovations and with N4 for combi-

nation innovations. Slight variations of our model, such as

different combination rules, would lead to somewhat differ-

ent relationships between population size and repertoire

size, but, qualitatively, the expected correlation is polynomial

in N (see also [28]).

Because of this nonlinear dependence on population size,

population subdivision has a dramatic effect on cultural reper-

toire size: a population of size 2N has a much higher cultural

steady state in our model than the sum of two populations of

size N (figure 1). As the relationship between N and repertoire

size is highly sensitive to the details of the model, which is

inevitably a gross simplification of reality, we do not attempt

to fit our model’s numerical results to empirical data. How-

ever, linking the qualitative trends produced by our model

with empirical findings can be useful. Our model’s prediction

of a polynomial dependency of repertoire size on N implies that

small differences in population size or connectivity can lead

to previously underappreciated disproportionate differences in

cultural complexity. This may help explain features of the

transition from the Middle to the Upper Palaeolithic, as

elaborated below.

3.2. The effect of rare migration on the cultural
repertoire

In our model, combining existing tools can produce inno-

vations. As a result, many new combinations are suddenly

possible after an initial migration event, and testing these

new combinations leads to a rapid burst of innovations.
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Figure 1. The tool repertoire size of a population of size 2N (a) is much larger than the sum of two populations of size N (b). In this example, a population has
approximately 40 000 tools, whereas the same population divided into two disconnected subpopulations has approximately 8000 tools at steady state. In (b), one
population’s cultural trajectory is shown. In both panels, red indicates lucky leaps (visible at the bottom of the inset of (b)), orange indicates toolkit innovations and
yellow indicates combination tools. Other parameters in (a) populations ¼ 1, N ¼ 50, Plucky ¼ 0.08, PcombUseful ¼ 1, PSpontLoss ¼ 0.08, Pmigrate ¼ 0; (b) populations ¼
2, N ¼ 25, Plucky ¼ 0.08, PcombUseful ¼ 1, PSpontLoss ¼ 0.08, Pmigrate ¼ 0.
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Figure 2. The effect of rare migration on cultural repertoire size. For t ¼ 0 to t ¼ 2000, there is no migration (Pmigrate ¼ 0); after t ¼ 2000, migration is possible
but very rare (Pmigrate ¼ 0.000025). One population’s cultural trajectory is shown. Migration events (red dots on the x-axis) represent the arrival of a new individual
to the population. Following the initial burst of culture driven by the combinations between the existing tools and those introduced by migration, there is a gradual
decay back to the steady state. Other parameters: populations ¼ 2, N ¼ 25, Plucky ¼ 0.08, PcombUseful ¼ 1, PSpontLoss ¼ 0.08.
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However, as we assume that the population size remains

constant after migration [47], the cultural steady state is

also constant. Thus, after the initial burst of innovation, the

cultural repertoire gradually decays to approach the original

steady state (figure 2).

3.3. The effect of frequent migration on the cultural
repertoire

As the migration rate, Pmigrate, increases, the cultural reper-

toire of the receiving population does not have enough time

between migration events to decay to the steady state

(figure 3); thus, average cultural repertoire size increases.

The effect of migration on the cultural steady state becomes

more apparent as the migration rate increases: with more

frequent migration, bursts of cultural accumulation no

longer occur and a population has a relatively stable cultural

repertoire that is substantially larger than the steady state

predicted by its population size. This result accords with

the findings of Powell et al. [12] regarding possible differences

between world regions. Notably, in our model frequent

migration between two populations of size N produces a

total cultural repertoire that is smaller than that of an unstruc-

tured population of size 2N because the loss parameter,

PSpontLoss, is still scaled by N and not 2N.

3.4. Migration and carrying capacity changes
In our model, following migration, tools that arose in separate

populations can combine, and each may, with some prob-

ability, be a tool that increases carrying capacity. When this

happens, the cultural steady state also increases, leading to

more step-wise accumulation of culture (figure 4a) instead of

a burst-and-decay pattern (figure 2). Carrying-capacity-altering

innovations could also initiate a feedback loop: when the

carrying capacity changes, the population grows and both

the cultural repertoire and the effective migration rate increase,

which further increases the likelihood that other carrying-

capacity-altering innovations occur, ratcheting the cultural

steady state upward (figure 4b).

Interestingly, if migration is intermediate in frequency,

populations may evolve while remaining culturally distinct:

core technologies are transmitted, but without the combination

tools that are associated with each, and cultural losses are

stochastic; thus, the combinations that arise in different popu-

lations only partially overlap. Major innovations, such as

those that increase carrying capacity, are very likely to spread

between the populations and remain shared, because of their

adaptive value (our model implements this via the assumption

that carrying-capacity-altering innovations are not stochasti-

cally lost; see also [5,12]). These shared carrying capacity

increases lead to populations of similar size and thus similar

cultural complexity (equations (2.1)–(2.3)). For a while, separ-

ate populations could co-develop: changes in population

sizes and cultural complexity would occur separately in each

population, but with higher correlation in timing than expected

for independent populations (figure 5a–c). Populations would

only remain separate temporarily: because population growth

increases overall migration rate, eventually migration occurs

frequently enough to prevent significant differentiation

between the cultures (figure 5d). Note that Pmigrate, an individ-

ual’s migration probability, changes in figure 5 at

predetermined time steps, demonstrating the possible effect

of sudden changes in migration rate.

4. Discussion
Human innovation is a multi-faceted process [42], but most

models of cultural evolution primarily consider the trans-

mission of existing cultural traits. To address this, we have

proposed models that assess the role of interdependent inno-

vation processes in causing cultural accumulation within a

population [28,29]. However, recent experimental evidence

underscores the importance of innovation via population

interaction: groups with independently evolving cultural

repertoires can produce useful new innovations by combining

their existing innovations [15].

Here, we propose a fairly simple model that synthesizes

these two research areas: multiple-independent populations

undergo processes of innovation and cultural accumulation
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Figure 3. The effect of frequent migration on cultural repertoire size. As in figure 2, Pmigrate ¼ 0 for t ¼ 0 to t ¼ 2000; after t ¼ 2000, Pmigrate ¼ 0.0001 in (a)
and Pmigrate ¼ 0.4 in (b). Each panel illustrates one population’s cultural trajectory. In (a), migration events are indicated by red dots on the x-axis; in (b), these
events occur so frequently (more than once per time step) that the dots are individually indistinguishable. As the overall migration rate increases, the cultural
repertoire does not return to the original steady state between migration events; thus, migration effectively elevates the cultural steady state of the population.
Other parameters (a,b): populations ¼ 2, N ¼ 25, Plucky ¼ 0.08, PcombUseful ¼ 1, PSpontLoss ¼ 0.08.
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separately, and migration allows the populations’ cultural

repertoires to be combined, producing additional inno-

vations. Further, we consider that some of these novel

cultural combinations might alter the biological carrying

capacity of the population, causing population growth

and a resulting increase in the cultural steady state, the

population’s expected number of cultural traits.

Our model produces five prominent patterns that appear

to differ from those of most previous model-based studies.

(i) We observe a polynomial relation between population

size and cultural complexity, causing small changes in N to

have disproportionate effects on repertoire size. (ii) We find

that rare migration may lead to transient emergence of

cultural complexity, which subsequently decays in small or

relatively disconnected populations. (iii) Changes in

migration rates may increase effective cultural population

sizes with no change in local population sizes, potentially

driving changes in cultural complexity. (iv) If culture affects

carrying capacity or range expansion and if population size

influences migration, a positive feedback loop may develop

in which population growth, inter-population contact and

cultural complexity interact. Such a feedback loop could

have driven the demographic and cultural explosion that

occurred in Eurasia shortly after the Middle to Upper Palaeo-

lithic transition, as these three components are prominent

characteristics of this transition [1,2,49–53]. Cultural inno-

vations, such as inventions that change subsistence patterns

or facilitate expansion to previously uninhabitable climates,

could have driven population increases; support for both

elements is found in the archaeological record [2,54–61].

(v) Complex cultural patterns may arise when multiple popu-

lations interact and exchange knowledge at intermediate

frequencies, potentially driving one another towards related,

but non-identical, trajectories of population growth and

increased cultural complexity. These dynamics are transient

if they subsequently increase migration, which eventually

links the populations and homogenizes their cultures.

A single narrative is unlikely to accommodate the full

range of archaeological observations regarding cultural

evolution in the Palaeolithic. Instead, we propose that the pat-

terns derived from our model may contribute to attempts to

understand the archaeological record. By predicting a non-

linear relationship between population size and cultural

repertoire, our model raises the possibility that undetectable

increases in population size could drive disproportionately

large changes in cultural complexity; alternatively, an

increase in connectivity among populations, without popu-

lation growth, could increase effective cultural population

size and lead to cultural transition.

For example, although anatomically modern humans

evolved in Africa approximately 160–200 ka [62–64], behav-

ioural modernity occurred significantly later, with the full

‘package’ of cultural traits characteristic of the Upper Palaeo-

lithic occurring only approximately 45 ka in the Levant,

Europe, Western Asia and perhaps East/South Africa

[2,65–69]. Estimates based on genetic and archaeological

evidence indicate that both population sizes and densities

increased in these regions near this time [49,70]. Our model

predicts a nonlinear relationship between population size

and cultural complexity, which suggests that cultural evol-

utionary dynamics could have driven the transition to

behavioural modernity; thus, invoking biological change to

explain this transition (as in [71,72]) is unnecessary. Qualitat-

ively similar results and interpretations, relating cultural

complexity to population size and migration in the transition

to the Upper Palaeolithic, have been suggested by Powell et al.
[12]. In addition, archaeological evidence does not unequivo-

cally support significant population growth in Africa

50–45 ka [73,74], which has generated criticism towards

attributing behavioural modernity’s emergence to population

size [11,75,76]. Our model’s prediction that small changes in

population sizes or migration patterns could drive large

cultural change may contribute to this discussion. Further, a

major characteristic of the Upper Palaeolithic revolution is

the dramatic increase in the distance of material and artefact

transportation [1,2,77,78]. As an increase in contact can

effectively connect populations, thus forming a single meta-

population with a larger cultural repertoire, our results suggest

that connectivity could have been a major driver of this cultu-
ral revolution and not just one of its outcomes (see also [43],

which analyses the combined effect of connectedness with

demographic fluctuation and local extinction).
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A nonlinear relationship between population size and cul-

tural complexity also provides a possible explanation for the

occurrence of full behavioural modernity only among

modern humans: estimates from genetic diversity suggest

that Neanderthals had a threefold smaller effective popu-

lation size than modern humans [79–81]. Neanderthals and

modern humans may have had similar cognitive and physical

capacity for behavioural modernity [82–85], yet behavioural

modernity only occurs in humans following the Neanderthal

replacement [52,86].

In our model, when an individual migrates to a new

population, the receiving population experiences a cultural

burst because many novel combinations of innovations are

suddenly possible. However, when migration is very rare,

the population size, and thus the cultural steady state,

remains constant, and the receiving population experiences

a gradual decay to its original steady-state repertoire size

(figure 2). This decay in the cultural repertoire after the initial

acquisition of imported knowledge has precedents in the

anthropological literature: even beneficial cultural traits from

one population do not necessarily spread in another [87,88],

potentially because of conflicting cultural norms [88] or

language barriers [89]. Our model demonstrates that these

complex cultural dynamics might occur, without making

assumptions about social networks or transmission rules.

A population’s migration rate may depend on numerous

factors, including geographical boundaries, subsistence strat-

egies and cultural practices, which may help explain the

patchy appearance and disappearance of stone tool techno-

complexes and other cultural practices during the Lower

and Middle Palaeolithic [2,18,90]. More frequent contact

between two populations would effectively increase the

tool repertoire at steady state, as migrants may reintroduce

cultural traits before the receiving population’s repertoire

can fully decay to its steady state (figure 3). Migration can

thus foster an elevated level of culture, either because

migration occurs regularly or because the cultural steady

state increases by some other mechanism.

We explore one such mechanism by considering cultural

traits that alter the biological carrying capacity. Throughout

history and prehistory, cultural innovations have enabled

human populations to extract more resources from their habi-

tat, probably leading to population growth and subsequent

increase of the cultural repertoire. In ourmodel,when indepen-

dent cultures come into contact, we assume that with small

probability an innovative combination of their traits will

increase the biological carrying capacity. The increased carry-

ing capacity allows population growth, in turn elevating the

cultural steady state. Thus, after a carrying-capacity-altering

innovation occurs, the contact-induced burst of innovative

combinations persists instead of decaying (figure 4).

The results in figure 5 provide a possible explanation for

one of the hotly debated observations in the transition

between the Middle and Upper Palaeolithic in Europe: the

transient prosperity of many cultures within a relatively

short time span near the Middle–Upper Palaeolithic tran-

sition, such as the Uluzzian, Bachokirian, Châtelperronian,

Bohunician and Proto-Aurignacian [91–95], which were dis-

tinct yet shared a number of characteristics that set them all

apart from Middle Palaeolithic cultures [51,86,94,96–102].

This relatively sudden appearance of multiple distinct com-

plex cultures with shared features is unlikely to be a

coincidence. It could have been brought about by gradual
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Figure 5. Co-development of partially connected populations. Panels
(a– c) show cultural dynamics in three contemporaneous populations
(N1 ¼ N2 ¼ N3 ¼ 25; colour scheme as in previous figures). Panel (d )
shows the fraction of cultural overlap of combination tools among popu-
lations: the mean fraction of tools in each population that are unique to
that population (blue), the mean fraction of combination tools that are
shared with one other population (cyan), and the mean fraction of com-
bination tools that are common to all three populations (yellow). Each
population’s culture is unique (Pmigrate ¼ 0) until t ¼ 500, and cultural
complexity is near steady state for long periods of time. From t ¼ 500
to t ¼ 800, Pmigrate ¼ 0.0004. During this phase, partially coordinated
cultural change occurs, while each population remains culturally distinct:
migration events (red dots) drive punctuated increases in cultural complex-
ity (each migrant introduces into the new population each of the core
technologies from its original population with probability fmigrant ¼ 0.3;
the new combination tools that become possible drive the increase in cul-
tural complexity), and inventions that increase biological carrying capacity
spread quickly (blue dots, (a– c)). Overall repertoire sizes increase in all
populations by similar orders of magnitude, while cultural overlap of com-
bination tools increases gradually, but with a significant fraction of each
population’s repertoire remaining unique (d ). At t ¼ 800, Pmigrate is
increased to 0.04. This more frequent migration leads to a state reminis-
cent of a single large population, driving overall cultural repertoire sizes
upwards sharply (a– c) and effectively near-homogenizing the popu-
lations’ cultures (d ). Other parameters (a–d): PIncreaseCarryingCapacity ¼
0.01, Plucky ¼ 0.02, PSpontLoss ¼ 0.02. Every increase in biological carrying
capacity (blue dots) is by a factor of between 1.1 and 1.2, leading the
populations to increase by the end of the simulation from N1 ¼ N2 ¼
N3 ¼ 25 to N1 ¼ 36, N2 ¼ 39 and N3 ¼ 32.
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diffusion of core technologies via rare migration, creating an

increase in cultural complexity, which was coordinated

among multiple localities yet rare enough to maintain differ-

ences between them, as seen in figure 5 (t , 500). Our model

proposes that, with time, cultural evolution could have

affected population sizes and, as a result, the migration

rates between them, leading to decreasing cultural differen-

tiation between local populations (figure 5, t. 500). The

prehistoric record in Eurasia is characterized by a similar pat-

tern: an increase in rates of population interaction in the

Upper Palaeolithic [1,2,77,78], driven by population growth

or by behavioural change, and replacement of the multitude

of techno-complexes near the Middle–Upper Palaeolithic

transition by the Aurignacian [86,96,97,99].

Another conspicuous archaeological pattern is the spora-

dic transient appearance of ‘advanced’ behaviours,

characteristic of the Upper Palaeolithic (Late Stone Age in

Africa), well within the Middle Stone Age: these include evi-

dence of abstract art such as engraved ochre pieces and

incised ostrich eggs, personal ornamentation such as shell

beads, and advanced bone and stone tools [2,62,103–111]. A

possible explanation of the transient nature of these phenom-

ena is that, as in our simulations, the populations in which

they occurred were too small and disconnected from one

another to stably maintain complex culture (see also [18]).

Many large-scale cultural shifts have been attributed to

external factors, such as environmental change and resource

availability [23,112,113], or cognitive and genetic changes

[21,25–27]; in these examples, non-cultural changes facilitate

a cultural response, resulting in increased cultural accumu-

lation. Here, we have explored two cultural factors that can

provoke bursts of innovation: population contact via

migration, and modification of the biological carrying

capacity. A recent archaeological study [114] suggested that

large cultural changes facilitate human expansion to new

areas. Building on this idea, migration could introduce new

information to a population, leading to range expansion,

which could be another sense in which cultural changes

could generate population growth. This raises a direction of

causality question in interpreting the Palaeolithic revolution:

did increased migration bring about cultural bursts, leading

to increased carrying capacities and resulting growth across

populations? Or did a carrying-capacity-modifying innovation

occur in one population, which in turn brought about cultural

changes that subsequently facilitated migration, expansion and

population growth?
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