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Recent advances in technology and quantitative methods have led to the

emergence of a new field of study that stands to link insights of researchers

from two closely related, but often disconnected disciplines: movement

ecology and collective animal behaviour. To date, the field of movement

ecology has focused on elucidating the internal and external drivers of

animal movement and the influence of movement on broader ecological pro-

cesses. Typically, tracking and/or remote sensing technology is employed to

study individual animals in natural conditions. By contrast, the field of col-

lective behaviour has quantified the significant role social interactions play

in the decision-making of animals within groups and, to date, has predomi-

nantly relied on controlled laboratory-based studies and theoretical models

owing to the constraints of studying interacting animals in the field. This

themed issue is intended to formalize the burgeoning field of collective

movement ecology which integrates research from both movement ecology

and collective behaviour. In this introductory paper, we set the stage for the

issue by briefly examining the approaches and current status of research in

these areas. Next, we outline the structure of the theme issue and describe

the obstacles collective movement researchers face, from data acquisition

in the field to analysis and problems of scale, and highlight the key contri-

butions of the assembled papers. We finish by presenting research that

links individual and broad-scale ecological and evolutionary processes

to collective movement, and finally relate these concepts to emerging

challenges for the management and conservation of animals on the move

in a world that is increasingly impacted by human activity.

This article is part of the theme issue ‘Collective movement ecology’.
1. Introduction
The collective movement of animals is one of the great wonders of the natural

world. Researchers and naturalists alike have long been fascinated by the

coordinated movements of vast fish schools, bird flocks, insect swarms, ungu-

late herds and other animal groups that contain large numbers of individuals

that move in a highly coordinated fashion ([1], figure 1). Vividly worded

descriptions of the behaviour of animal groups feature prominently at the

start of journal articles, book chapters and popular science reports that deal

with the field of collective animal behaviour. These descriptions reflect the

wide appeal of collective movement that leads us to the proximate question

of how collective movement operates, and the ultimate question of why it

occurs (sensu [2]). Collective animal behaviour researchers, in collaboration

with physicists, computer scientists and engineers, have often focused on
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Figure 1. Collective movement is widespread in nature. Clockwise from top left: Wildebeest in the Serengeti, salmon in Alaska, godwits in The Netherlands and
monarch butterflies in Mexico. Images by Daniel Rosengren (wildebeest), Jason Ching (salmon), Steven Ruiter (godwits) and Ingo Arndt (butterflies).
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mechanistic questions [3–7] (see [8] for an early review). This

interdisciplinary approach has enabled the field to make

enormous progress and revealed fundamental insights into

the mechanistic basis of many natural collective movement

phenomena, from locust ‘marching bands’ [9] through

starling murmurations [10,11].

Owing to the significant benefits of group living [12], the

ecological role of collective movement has long been the sub-

ject of studies in animal behaviour [13–16]; however, there has

recently been a resurgent focus on questions relating to why
collective movement occurs and what its ultimate function

is. Researchers have asked whether certain types of collective

movement afford group members better survival probability

[17], better access to information about the environment

[18–20] and better abilities to make decisions [21], and even

how different ecological conditions, such as different levels

of predation, may act as selective drivers favouring specific

collective movement ‘rules’ [22,23]. Increasingly, such evol-

utionary and ecological questions have appeared as essential

complements to mechanistic accounts, and calls for more

research in the area abound [24]. Thus, examining collective

movement within its ecological context is a burgeoning field

of study.

Similarly, within the field of movement ecology there is an

increasing recognition of the importance of social dynamics

on both fine-scale [25,26] and broad-scale processes [27–29].

Formalized by Nathan et al. [30] approximately a decade

ago, movement ecology is a distinct paradigm for studying

the how and why of movement, along with its consequences

for individuals, communities and ecosystems. The expanse

of research in this area has been driven in large part by techno-

logical advances that have revolutionized the collection of data

on animal movement [31,32]. These advances have most nota-

bly involved biologging and remote telemetry which enable
individual tracking, but also include advances in our ability

to simultaneously collect environmental data, and analytical

developments in mathematical models of movement [33]

that enable statistical inference of cues and drivers [34]. As

our knowledge of animal movement accumulates there has

been an increasing appreciation that many movement pro-

cesses must be considered and quantified within a social

context. Even in species without stable social groups or high

degrees of cohesion, the movements of one individual can

influence the movement decisions of another, and often

social cues are as important as environmental cues [35].

As an operational definition, we consider collective move-

ment to be occurring when movements are modified by the

interactions between animals, either directly (e.g. via visual

cues) or indirectly (e.g. via trail formation). While collective

movement is not restricted to intraspecies interactions, the

movement decisions of individuals will typically share

common drivers and/or motivations; thus we do not consider

predator evasion by a single prey collective movement,

whereas the escape of multiple prey making use of social

cues is. Collective movement processes will often be charac-

terized by social transmission of information, threshold

responses to environmental cues, hysteresis and nonlinear

behaviours that are the hallmark of complex systems. Increas-

ingly the importance of social interactions is being recognized

by researchers in the field of movement ecology [28,36–41];

hence while collective animal behaviour and movement ecol-

ogy are two distinct fields, more and more researchers are

operating at the interface between the two (figure 2). While

it is clear that both disciplines are already beginning to inte-

grate, in this theme issue we attempt to synthesize current

results, identify key challenges common to research in collec-

tive movement ecology in a variety of study systems, and

provide a road map for future directions.
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Figure 2. Current status of research in the fields of collective behaviour and movement ecology. (a) We examined the previous collaboration networks of all authors
who participated in this theme issue and used a clustering algorithm to assign each author to a community. The algorithm detected seven distinct collaborative
communities, indicated by different colours above. We then classified each of the seven communities determined by the algorithm as either ‘collective behaviour’ or
‘movement ecology’ based on which phrase appeared more predominantly in the abstracts and titles of all their published work. For each community, we then
looked at the most common words that appeared in their previous articles. (b) The words most associated with contributors to the issue who were classified as
movement ecologists. (c) Words associated with contributors from the field of collective behaviour. While highly qualitative, these results reveal the focus on
population and species for movement ecology, whereas collective behaviour has a greater concentration on the individual. Further, we examined where researchers
in each field publish. (d ) Top 10 most common journals for contributors to the issue who were classified as collective animal behaviourists. (e) Top 10 most common
journals for contributors to the issue who were classified as movement ecologists.
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2. Aims of the themed issue
Recently, it was stated that for movement ecology ‘under-

standing how social and interspecific interactions affect

movement is the next big frontier’ [31]. The overarching goal

of this theme issue is to bring together researchers across dis-

ciplines in order to meet this challenge. Contributed articles

span all facets of studying collective movement in ecology,

from technological advances in tracking and data processing,

through analysis of animal group behaviour and the popu-

lation-level and ecological impacts of collective movement,

to the implications of understanding such processes for the

conservation of animal groups in their natural habitat. It is

our intention that the issue will become a resource for scien-

tists wishing to learn about methods and techniques in

collective movement research, illustrate the importance of

incorporating inter- and intra-species interactions into move-

ment ecology, and act as a call to arms for researchers in the

field to provide the impetus and expertise required to advance

our understanding of animal movement patterns in nature.
3. Overview of contributed papers
While movement ecology has recently experienced a rapid

increase in the availability of empirical data collected from
free-ranging animals, the study of collective movement has lar-

gely relied on laboratory and simulation approaches. To

investigate movement decisions in their social context, fine tem-

poral resolution, simultaneous trajectories of multiple

individuals are required. While there are several notable studies

that explore collective movement in situ [10,42–45], recent tech-

nological advances are poised to dramatically improve our

ability to collect data on the movements of animal groups. In

this issue, Hughey et al. [46] review the advances that now

permit data collection on the movements of, and interactions

within, animal groups in the wild, from animal-mounted bio-

loggers [47] to aerial video [48] and acoustic [49] field imagery.

Moreover, technology such as GPS-enabled data loggers may

turn animals themselves into environmental sensors that can

be used to capture fine-scale physical data, such as detailed

maps of airflow within complex thermal updrafts [47].

These new data sources create opportunities for rigorous

new quantitative techniques to infer social interactions and

the mechanisms behind the maintenance of group-level func-

tioning in the wild. Strandburg-Peshkin et al. [50] propose a

novel generalized framework that characterizes the distri-

bution and consistency of individual influence on group

decision-making processes, and review some of the analytical

tools that can be employed to detect individual influence on

group decisions. A continual challenge is to distinguish and
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disentangle the influences of social and potentially co-occurring

multiscale environmental drivers (reviewed by Torney et al.
[51]). To address this issue, Calabrese et al. [52] present a sto-

chastic model of correlated movement that quantifies the

contributions of external forces and social dynamics. Through

application of their model to barren-ground caribou (Rangifer
tarandus granti) and khulans (Equus hemionus) of the Gobi

Desert, the authors capture abrupt shifts from uncorrelated to

correlated movement in caribou without incorporating external

information. Khulans exhibit intermittent periods of correlated

movement suggestive of shared tendencies to move from west

to east following an unusually harsh winter. Using a factor

analysis, Sumpter et al. [53] partition the influences of com-

monly measured traits (e.g. speed, group size, alignment)

collected from tracks of guppies (Poecilia reticulata) into two

key components of behaviour that the authors relate to sociabil-

ity and activity. Their analysis suggests that these behavioural

components differ between sexes and populations that

experience divergent regimes of selection.

Together, new data from emerging technologies and novel

quantitative techniques can reveal the behavioural processes

at the individual level that drive collective group dynamics

in the wild. Capitalizing on the advances in high-resolution

GPS technology that allow the fine-scale tracking of

individuals in flocks, Nagy et al. [47] explore how groups of

migrating white storks (Ciconia ciconia) act as distributed

sensor arrays when locating and climbing thermal updrafts.

Sasaki et al. [54] use similar technology to investigate the

link between individual heterogeneity and leadership during

collective movement by homing pigeons (Columba livia).

They find that ‘bold’ individuals tend to occupy higher

ranks in the leadership hierarchy, and thus have more influ-

ence on the flock during flight, than do ‘shy’ birds. Berdahl

et al. [55] review literature on collective animal navigation

and highlight five mechanisms that can improve individuals’

ability to find their way when travelling in groups, including

emergent sensing [47] and leadership [54] discussed above.

They go on to explore how social and collective learning can

lead to the accumulation of navigational knowledge at the

population level and thus to migratory cultures.

Early simulation-based studies of collective movement

demonstrated that simple and intuitive local interactions

between homogeneous individuals produced complex and rea-

listic group-level patterns [56]. As empirical studies uncover the

actual interactions between groups’ members [10,44,47, 48,57],

the importance of individual heterogeneity is being revealed

[47,48,54]. In this issue, del Mar Delgado et al. [58] address

this question directly and provide evidence that not accounting

for individual variability currently impedes understanding of

how group decisions are made and that predictions of collective

movement that ignore individual variation are likely to fail.

Through the use of aerial filming, Torney et al. [48] demonstrate

how interaction rules and individual variation may be quanti-

fied, in this context examining the heterogeneous nature of

social interaction of migrating caribou (Rangifer tarandus
groenlandicus � pearyi). Taken together, many articles in this

issue highlight the importance of individual heterogeneity for

collective movement, suggesting that it is a current area of

interest for the field, and likely to be a focus moving forward.

The main goal of this theme issue, and a unifying feature of

many papers herein, is the illumination of the ecological and

evolutionary consequences of collective movement. To that

end, Torney et al. [51] explore the perennial problem of scale.
An ultimate theory of movement ecology would be able to

connect long-range movement (e.g. migrations) to their smal-

lest constituent movements, taking into account the role of

abiotic, biotic and social cues motivating these movements

across scales. Berdahl et al. [55] tackle this in detail, by explor-

ing how social interactions among individuals scale up to

improved ability of groups to navigate when migrating or

foraging. Yeakel et al. [59] investigate the interplay between

ecology and evolution as a consequence of density-dependent

dispersal consistent with collective navigation [60]. Their

simulation based on a generic migratory salmon life history

suggests that density-dependent dispersal can promote popu-

lation robustness at the metapopulation level in the context of

environmental change. In a social insect case study, Beekman

& Oldroyd [61] use nest-site selection by two honeybee species

(Apis spp.) to illustrate how a species’ ecology may tune the

decision-making processes underlying its collective move-

ment. For example, whether suitable nest sites are more or

less abundant in the environment may shape the extent to

which the same ancestral decision-making algorithm is fine-

tuned for accuracy to choose the best possible site. Beyond

single-species collective movement, Sridhar & Guttal [62]

argue that group benefits often cross species borders, and pro-

pose a new general framework for heterospecific sociality. At a

broader scale, Hardesty-Moore et al. [63] undertake a general

assessment of the state of the populations of a wide range of

migratory species in the Anthropocene and find evidence

that collective behaviour is associated with extinction risk for

fishes and birds, but not for mammals. However, two studies

highlight the importance of collective movement in mammals

(wildebeest (Connochaetes sp.) [51] and Thomson’s gazelles

(Eudorcas thomsonii) [64]) in the Serengeti ecosystem. Focusing

on trophic interactions, Fryxell & Berdahl [64] explore how

group living may influence fitness and also reflect trade-offs.

They speculate on how mechanisms such as the many eyes

effect or increased competition can be captured in analytical

models for population dynamics.
4. From cameras and collars to conservation
and management

While the contributions to this issue are predominantly focused

on fundamental research, the future of collective movement

ecology is likely to be its application to conservation and the

management of wild populations. In this section, we explore

the linkages between group-level dynamics, ecological-level

processes, and management implications. We conclude by

discussing the potential adaptations and maladaptations of

collective movement in a rapidly changing world.

(a) Ecological implications
The fact that collective movement is common across taxa,

environments and contexts suggests that it improves individual

fitness through a suite of anti-predatory and information-

sharing benefits [12]. The social interaction rules that lead to

group behaviour [10,42,44,47,48,57], and the mechanisms

by which that group behaviour improves various metrics

of performance, have both been relatively well studied

[9,18,41,65,66]. By contrast, for the most part we are still

missing an understanding of the influence of collective move-

ment, and more generally collective behaviour, on ecological

processes and patterns. However, there are a handful of

http://rstb.royalsocietypublishing.org/
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theoretical predictions of how collective behaviour might

influence ecological dynamics along with some notable

empirical demonstrations. For example, simple grouping is

thought to influence trophic interactions and stabilize popu-

lation dynamics [67], while reliance on sociality may induce

Allee effects across a variety of contexts [27]. Specifically, col-

lective navigation during breeding migrations has been

predicted to cause analogous population collapse [29,68] and

density-dependent dispersal [60] and to influence metapopu-

lation stability [59]. Additionally, social interactions influence

the timing of migrations [69,70]. Finally, fission–fusion

dynamics allow ecologically relevant information to spread

throughout populations [28,41,71]. A better understanding of

collective behaviour, especially from rigorously quantified

in situ observations and experiments, should allow us to

better connect the resulting group dynamics to their ecological

and evolutionary consequences.

(b) Management & conservation
How might a better understanding of collective behaviour and

movement intersect with natural resource management and

conservation? The collapse of the northern cod (Gadus
morhua) fishery of Newfoundland and Labrador is a notorious

failure of fisheries management. Virtually overnight in July

1992, approximately 40 000 people lost their jobs and way of

life defined by a fishery that had been sustainable for over

500 years [72]. Political and economic influences notwithstand-

ing, the schooling behaviour of northern cod undoubtedly

contributed to their demise. As the stock collapsed in abun-

dance, fish remained in dense aggregations that could be

efficiently located and targeted by fishing boats equipped

with modern navigation and sonar [73]. Catches targeting

these aggregations of fish remained high in the years preceding

the collapse, adding to the confusion of managers who relied

on catch rates as indices of abundance. Schooling behaviour

resulted in patterns of ‘hyperstable’ catches by harvesters that

masked the true pattern of collapse and has led towards a

recognition that catch rates, especially in socially aggregating

fish schools, are a dubious index of abundance and should

not form the core of stock assessments [74,75]. In general, dri-

vers of collective behaviour that lead to spatial aggregation

may cause range contraction and increase the risk of collapse

or extinction [76].

Management that recognizes patterns of collective

movement is already common for some species. For example,

sockeye salmon (Oncorhynchus nerka) appear to form stock-

specific groups in the final stages of their homeward

marine migrations to the Bristol Bay region of Alaska, and

managers and fishermen use this information to inform

decisions about where and when to harvest nearly in real

time [77]. Salmon management within river systems can

similarly incorporate collective migration dynamics into

decision-making frameworks. For example, on the Yukon

River, Chinook salmon (Oncorhynchus tshawytscha) tend to

migrate as large groups corresponding to genetic structure

[78]. Perhaps not surprisingly, populations that are destined

to spawning areas in the upper watershed, some as far as

3200 km from the ocean, tend to enter the river earlier

than individuals from populations spawning lower in the

watershed [79]. In general, salmon enter the river in

discrete stock-specific pulses, which might be the result of

social coordination [70], and by knowing the travel rates of

individuals, managers can choose to target or avoid these
groups by opening or closing different parts of the river

system [80].

Management based on collective movement dynamics has,

in fact, a long history. Traditional knowledge from Inuit people

suggests that caribou migrations are led by a certain set of

female caribou [81–83]. As a result, traditional hunting prac-

tices avoid harvesting the lead animals, since those cows are

understood to be responsible for both ensuring a healthy

migration and also leading the caribou to specific sites year

after year, where they could be harvested [82,84]. Evidence is

only anecdotal, but perhaps the recent shift in migration

routes away from communities, which were established at tra-

ditional hunting sites, is in part linked to harvesting outside of

these guidelines by less experienced hunters [82,83,85].

Consideration of such leadership by an informed subset

of migratory individuals [55], be they older or more experi-

enced, may generate important targets for management

conservation and restoration more broadly. For example, it

has been shown in whooping cranes (Grus americana) that

the navigational performance of a group depends on that

group’s most experienced member [86], while restoration

efforts employ ultra-light aircraft to teach migration routes to

inexperienced migrants, in the hope that they will in time

become tutors themselves.

Collective behaviour might also be an important consider-

ation for management practices aiming to limit population

growth or numbers in species that are pests or invasive. For

example, migratory swarms of desert locusts (Schistocerca
gregaria) cause extensive damage to crops, regularly leading

to financial loss, food shortages and famine [87]. Outbreaks

usually occur after locust density build-up, often due to a

combination of increasing population and receding vegetation

[88]. High densities of locusts trigger a physiological and

behavioural switch from a solitary phase to a gregarious one

where individuals are actively attracted to each other,

which, combined with a tendency for locusts to align with

their neighbours [9,89], eventually leads to migratory

swarms [90,91]. By explicitly considering ecological and

social factors leading to this behavioural shift, management

practices may become more efficient and effective at prevent-

ing it [92]. Further, even after the shift has occurred,

understanding locust collective behaviour can be key to

improving control practices such as barrier spraying, because

the efficiency of these methods relies on predicting the move-

ment of locust hopper bands [93].

In species with complex and stable groups, optimal man-

agement approaches might take into consideration social

structure, hierarchies and group dynamics. In species in

which older members serve as informational repositories,

such as elephants, the death of older animals has long-lasting

effects. When culling elephants (Loxodonta africana), typically

all of the older individuals in a group are killed and the younger

individuals left [94]. However, even decades later, the remain-

ing elephants do not respond appropriately to social cues

[94]. In wolves (Canis lupis), in spite of compensatory dynamics,

which support in general a high harvest rate, groups losing the

alpha members may be more likely to skip a breeding season,

alter group composition or break up altogether; so there may

be some ephemeral behavioural and group-level responses

[95–97]. Further work indicates that there may be a critical

group size, below which reproduction rates are negative [98].

Some suggest that lethal population control efforts should

target solitary individuals or territorial pairs [99].
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(c) Collective movement in the Anthropocene
Across geographies and taxa, animals face new challenges

in an era when humans are a dominant ecological and evol-

utionary force on the planet. Social animals face further

challenges when the nature of their social interactions or

group functioning is impacted by the changing environment.

Pharmaceuticals and other synthetic chemicals are present in

water in high enough concentrations to affect the behaviour

of aquatic organisms such as fish [100], and in particular,

such substances can affect social behaviour [101,102]. Simi-

larly, anthropogenic noise pollution is thought to disrupt

natural (social) behaviour in many marine and terrestrial

organisms [103,104], and air and light pollution are likely to

do the same. In all of these cases, social interaction rules

may be finely tuned to optimize fitness [22,23,61,64] and alter-

ing these interactions would then lead to maladaptive

behaviours. A similar mismatch between optimal collective

behaviour and environmental conditions may occur when

the social behaviours do not change, but the environmental

conditions do. For example, fission–fusion dynamics may

spread information about profitable foraging sites through a

population, but if in contemporary, human-altered landscapes

the environmental cues do not match the environmental

quality, the same fission–fusion dynamics would spread

maladaptive information through the population [28].

Similarly, it has been suggested that the strong social

dynamics of matrilineal killer whale (Orcinus orca) pods may

explain the continued use of habitats that are now polluted

by chemicals and noise resulting from an increase in human

activity [105]. A changing climate may alter the optimal

destinations, routes and timings of animal migrations

[106,107]. Thus, on the one hand, collective navigation and

search strategies should help animals that migrate as groups

adapt to this change, yet conversely, migratory culture could

make current migratory tendencies more persistent and less

adaptable to change [55,108]. Ultimately, it remains unclear

whether collective movement may be a net promoter or inhibi-

tor of survival in a world increasingly dominated by human

activity [63].
5. Conclusion
It is our hope that this theme issue integrates collective

movement with broader questions in ecology and evolution,
provides a framework for future work, and by doing so

takes a first step into the next big frontier proposed by Kays

et al. [31]. Driven by the latest technological advances allowing

us to simultaneously track many animals on the move,

coupled with cutting edge analyses of behaviour at high resol-

ution, we anticipate that social interactions will become a

natural extension to the movement ecology paradigm [30].

Although there are major challenges on the horizon, such

as how to integrate habitat heterogeneity and individual-

level variation into analyses of collective movement, we are

now closer to a comprehensive understanding of both how
and why animals move together in nature. Just as conservation

and management have increasingly acknowledged the role of

evolution on ecological processes [109], we expect that the

rules and potential trade-offs associated with collective move-

ment will also be integrated into conservation efforts. Only by

doing so may we expect to preserve the fascinating patterns of

movement that have for so long captured our collective

imagination.
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