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a b s t r a c t

Evolutionary models for a cultural trait under vertical and oblique cultural transmission are analyzed.
For a dichotomous trait, both the fitnesses of the variants and their rates of transmission are allowed to
vary. In one class of models, transmission fluctuates cyclically together with fitnesses, and conditions are
derived for a cultural polymorphism. A second class of models has transmission and selection fluctuating
randomly with possible covariance between them. A third class of models involves two populations with
migration between them and with transmission rates and fitnesses different in the two populations.
Numerical analysis leads to qualitative conditions on the transmission rates and fitnesses that allow
protected polymorphisms. With symmetric migration analytical conditions for protected polymorphism
are derived.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In evolutionary genetics, the properties of transmission are
known to be important, e.g., uniparental vs. biparental; haploid
vs. diploid; with or without recombination; sexual or asexual. For
cultural evolution, the mode of transmission between individuals
of the same or different generations is also central to the dynamics
of cultural traits. Using analysis with epidemic theory, Cavalli-
Sforza and Feldman (1981, ch. 3) introduced models in which
a specific cultural trait is transmitted either vertically, that is,
directly from parent to offspring, obliquely, that is, from non-
parental members of the parent’s generation to an offspring, or
horizontally, that is, among members of the same generational
cohort. Mathematical models of cultural evolution may include
one or more modes of cultural transmission and in most of these
models the mode of transmission by individuals is fixed; that is,
it does not vary over time or space. For example, Feldman et al.
(1996), Wakano et al. (2004), Aoki et al. (2005), and McElreath
and Strimling (2008) focused on competition between individual
learning, innate learning, and social learning; Fogarty et al. (2017)
compared the effects of different oblique mechanisms (random,
success-biased, best-of-k, one-to-many) on the cultural richness
and diversity of the population; and Aoki et al. (2012) modeled
scenarios in which individual and social learning occur during
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separate stages in life. In these studies, the cultural transmission
rule did not change during the evolutionary process.

Several of these models included fluctuating selection, which
could be due to environmental changes (reviewed inAoki and Feld-
man, 2014). We recently studied a model in which each individual
can learn a dichotomous phenotype either from a parent, with
probability ρ, or from an adult in the parental generation, with
probability 1 − ρ (Fig. 1). We found that if selection fluctuates
between favoring each of the two phenotypes, but on average fa-
vored both phenotypes for similar time periods, then a phenotypic
polymorphismmay bemaintained (Ramet al., 2018). Furthermore,
we found that if the environment changes very rapidly then lower
ρ values are likely to evolve, that is, oblique transmission is favored
over vertical transmission.

There has been much less theory developed for fluctuating
transmission. Nevertheless, if we assume that social learning can
be affected by ecological and demographic factors, such as the
frequency of interactions (van Schaik, 2003), weather (Phithakkit-
nukoon et al., 2012), population size or density (Fischer et al.,
2015; Aureli and De Waal, 1997), or stress (Farine et al., 2015),
then it is reasonable that the mode and rate of transmission may
fluctuate over time and/or space. For example,Webster and Laland
(2008) have demonstrated that minnows (small freshwater shoal-
ing fish) increase their reliance on social learning when predation
risk increases, whereas Hewlett et al. (2011) found that the balance
between vertical and non-vertical cultural transmission depends
on core cultural values and therefore differs between hunter-
gatherers and farmers.
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We previously analyzed a model (Ram et al., 2018) in which in-
dividuals learn a cultural trait from their parentswith probabilityρ

(vertical transmission), and from adults in the parental generation
with probability 1 − ρ (oblique transmission; see Fig. 1). Here, we
generalize this model to allow for the vertical transmission rate
ρ to fluctuate over time or space. We find that fluctuations in ρ

without corresponding fluctuations in selection cannot maintain
trait polymorphism. When both the rate of vertical transmission
and selection fluctuate together in a deterministic setting, the
stronger the selection, the greater is the difference in vertical
transmission rates that maintains trait polymorphism. Versions of
the model with random fitnesses and transmission rates, and with
random drift due to finite population size are also analyzed. We
also study a two-population model with migration, symmetrically
different fitnesses in the two populations, and different rates of
vertical transmission in the two populations. Stability of fixation
points and trait polymorphism are shown to depend on strength
of selection as well as rates of migration and transmission.

We suggest that cultural evolution can be affected by environ-
mental changes that cause temporal or spatial variation in either
selection or transmission or both, and that such variation has a
significant effect on trait polymorphism.

2. Models and results

Following Ram et al. (2018), we consider a very large popula-
tion whose members are characterized by a single dichotomous
cultural trait with phenotypes A and B that determine the repro-
ductive success of adults, with fitness values wA = 1 + s and
wB = 1, respectively. Example traits include foraging and hunting
techniques, such as lobtail feeding in humpback whales (Allen
et al., 2013) and fruit processing in capuchin monkeys (Barrett
et al., 2017), child caring, mating skills, and dancing in human
hunter-gatherers (Hewlett and Cavalli-Sforza, 1986), and even ca-
noe design in Polynesia (Rogers and Ehrlich, 2008). Phenotypes
are transmitted from adults to juveniles: vertically from parent to
offspring with probability ρ, or obliquely from random adults to
offspring with probability 1 − ρ (Fig. 1). Given x, the frequency of
phenotype A at the current generation, the frequency of A in the
next generation is (see eq. 2 in Ram et al. (2018))

x′
= ρ

1 + s
w

x + (1 − ρ)x

=
1 + s

w
x
[
(1 − ρ)x + ρ

]
+

1
w

(1 − x)[(1 − ρ)x],
(1)

where w = 1 + xs is the population mean fitness.

2.1. Periodically fluctuating transmission

Suppose that the vertical transmission rate ρ fluctuates, with
ρ = ρ1 in odd generations and ρ = ρ2 in even generations. From
(1), the recurrence equations for two generations are

x′
= ρ1

1 + s
w

x + (1 − ρ1)x, w = 1 + xs,

x′′
= ρ2

1 + s
w′

x′
+ (1 − ρ2)x′, w′

= 1 + x′s.
(2)

First, fixations of A and B (x∗
= 1 and x∗

= 0, respectively) are
both equilibria, as they solve x′′

= x. Second, when s > 0 (s < 0)
because x′/x = 1 +

ρ1s(1−x)
1+sx > 1 (< 1) and x′′/x′

= 1 +
ρ2s(1−x′)
1+sx′ >

1 (< 1), the frequency of A (B) increases every generation and
x∗

= 1 (x∗
= 0) is globally stable. Therefore, fluctuations in the

mode of transmission (ρ) without fluctuations in selection lead to
fixation of the favored phenotype, and there cannot be a stable
polymorphism.

Fig. 1. Cultural transmissionwithmixed vertical and oblique transmission.When a
newbornmatures, she copies the phenotype—color—of hermotherwith probability
ρ, therefore becoming blue, or from some other female with probability 1 − ρ, in
which case her color will depend on the frequency of blue and red adult females.

2.2. Periodically fluctuating transmission and selection

Suppose that both transmission and selection fluctuate to-
gether, so that when A is favored, with wA = 1 + s and wB = 1
with s > 0, the transmission rate is ρA, and when B is favored, with
wA = 1 and wB = 1 + s, the transmission rate is ρB. The change
in the frequency x of phenotype A when either A or B is favored is
described by FA(x) or FB(x), respectively, where

FA(x) = ρA
1 + s
1 + sx

x + (1 − ρA)x, and

FB(x) = ρB
1

1 + s − sx
x + (1 − ρB)x.

(3)

If the environment fluctuates between favoring A for k generations
and B for l generations constituting a period of (k + l) generations,
we describe this as AkBl.

Symmetric periods—AkBk. We first consider environments that
fluctuate periodically every k generations between favoring A and
B. Using a linear approximation, fixations of A (x∗

= 1) and B
(x∗

= 0) are locally stable if, respectively,[
F ′

A(1)F
′

B(1)
]k

< 1, and[
F ′

A(0)F
′

B(0)
]k

< 1.
(4)

By definition, a protected polymorphism exists if neither fixation is
stable (Prout, 1968), that is, if neither of these conditions are met.
Therefore, for a protected polymorphism to exist, we require

1 < F ′

A(1)F
′

B(1) =

(
1 − ρA

s
1 + s

)(
1 + ρBs

)
= 1 +

s
1 + s

[
ρB(1 + s − sρA) − ρA

]
, (5)

and

1 < F ′

A(0)F
′

B(0) =

(
1 + ρAs

)(
1 − ρB

s
1 + s

)
= 1 +

s
1 + s

[
ρA(1 + s − sρB) − ρB

]
, (6)
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Fig. 2. Protected polymorphism. The frequency of phenotype A at the stable
equilibrium (Eq. (9)) for different selection coefficients (s on x-axis) and size of
fluctuations in vertical transmission rates (ρB − ρA on y-axis) when both selection
and transmission fluctuate every generation (k = 1). Dashed lines represent ρB =

ρA
1+s(1−ρA)

and ρB =
(1+s)ρA
1+sρA

, the limits on ρB − ρA from inequalities (7) that permit a
protected polymorphism. Here, ρA = 0.5.

which can be summarized as a condition on ρB,

ρA

1 + s(1 − ρA)
< ρB <

(1 + s)ρA

1 + sρA
, (7)

or as a condition on the difference between ρB and ρA

−sρB(1 − ρA) < ρB − ρA < sρA(1 − ρB). (8)

We can state this as Result 1.

Result 1. Suppose that vertical transmission occurs at rate ρA when
the fitness of phenotype A is 1 + s relative to 1 for phenotype B, and
at rate ρB when the fitness of phenotype B is 1 + s relative to 1 for
phenotype A, where s > 0. Then the stronger the selection (i.e. the
greater the value of s), the larger the difference in vertical transmission
rates that allows a protected polymorphism.

The case A1B1. In the case k = 1 we can find x∗ the frequency of A
at the protected polymorphism. Set FB(FA(x))− x = G(x) · x(1− x) ·
γ (x) with

G(x) = ax2 + bx + c,

γ (x) = −
1 + sx

s

[
1 + s + s2x(1 − ρ)(1 + x)

]
,

a = s2ρA(1 − ρA)(1 − ρB + ρB/ρA) > 0,
b = s(1 − ρA)(2ρB − sρA(1 − ρB)),
c = ρB − ρA − sρA(1 − ρB).

(9)

Then x∗ is a solution of the quadratic G(x) = 0. The condition (7),
which guarantees that 0 < x∗ < 1, is equivalent to c < 0, and
therefore it also guarantees that

√
b2 − 4ac > b. So, if 0 < s < 1

(b is then guaranteed to be positive if LHS of Eq. (7) holds), then

x∗
=

−b +
√
b2 − 4ac
2a

. (10)

Fig. 2 shows x∗ and highlights the area of the parameter space in
which a protected polymorphism exists. The figure demonstrates
that the stronger the selection, the greater the fluctuations in ρ

that still allow apolymorphic population (area between the dashed
lines).

General period—AkBl. More generally, phenotype A could be fa-
vored for k generations and phenotype B for l generations, with the
transmission rate following the same cycle with ρ = ρA when A
is favored and ρ = ρB when B is favored. The requirements for a
protected polymorphism are now

1 < (F ′

A(0))
k(F ′

B(0))
l
= ak

(
b − s∆ρ/(1 + s)

)l
, and

1 < (F ′

A(1))
k(F ′

B(1))
l
= bk(a + s∆ρ)l,

(11)

where a = 1 + ρAs > 1, b = 1 − ρA
s

1+s < 1, and ∆ρ = ρB − ρA.
This leads to a condition similar to eq. 20 in Ram et al. (2018), but
more complex due to the inclusion of ∆ρ:

− log b
log

(
a + s∆ρ

) <
l
k

<
log a

− log
(
b − s∆ρ/(1 + s)

) . (12)

Therefore, for a given value of ρA, if ρB > ρA then increasing the
vertical transmission rate of B decreases the environmental period
ratio l/k that permits a protected polymorphism; decreasing ρB
will have the opposite effect: it increases the ratio l/k that permits
a protected polymorphism.

2.3. Randomly fluctuating transmission and selection

Now suppose that both selection and transmission fluctuate
randomly. Rewrite Eq. 28 from Ram et al. (2018) so that ρ is also a
random variable

xt+1 = xt
1 + zt + xt (1 − ρt )st

1 + xtst
, (13)

where zt = ρtst ; st are i.i.d (independent and identically dis-
tributed); Pr(−1 + C < st < D) = 1 for some positive C and
D; ρt are i.i.d; and 0 < ρt < 1 (t = 0, 1, 2, . . .). Therefore, zt are
independent and identically distributed and P(−1+C < zt < D) =

1. Following Karlin and Lieberman (1974), we have:

Definition. ‘‘stochastic local stability’’. A constant equilibriumstate
x∗ is said to be stochastically locally stable if for any ϵ > 0 there
exists a δ > 0 such that |x0 − x∗

| < δ implies

P( lim
t→∞

xt = x∗) ≥ 1 − ϵ. (14)

Thus stochastic local stability holds for x∗ provided for any initial
x0 sufficiently near x∗ the process xt converges to x∗ with high
probability.

In our case there are two constant equilibria x∗
= 0 and x∗

= 1
corresponding to fixation in B and in A, respectively. From Ram
et al. (2018, results 6 and 7)we can characterize the stochastic local
stability of these fixations as follows.

• Suppose E[log(1 + zt )] > 0. Then x∗
= 0 is not stochastically

locally stable and in fact P(limt→∞xt = 0) = 0, i.e., fixation
of B almost surely does not occur.

• Suppose E[log(1 + zt )] < 0. Then x∗
= 0 is stochastically

locally stable.
• Similarly, if E[log(1 − zt/(1 + st ))] < 0, then x∗

= 1 is
stochastically locally stable, and if E[log(1− zt/(1+ st ))] > 0,
then fixation of A almost surely does not occur.

• In particular, if E[zt ] = cov(ρt , st )+ E[ρt ]E[st ] ≤ 0 then x∗
=

0 is stochastically locally stable, and similarly if E[−zt/(1 +

st )] = cov(ρt , −st/(1 + st )) − E[ρt ]E[st/(1 + st )] ≤ 0 then
x∗

= 1 is stochastically locally stable.
• It is not possible that E[log(1+ zt )] and E[log(1− zt/(1+ st ))]

are both negative, as their sum is positive:

E[log(1 + zt )] + E[log(1 − zt/(1 + st ))]
= E[log(1 + zt ) + log(1 − zt/(1 + st ))]
= E[log

(
(1 + zt )(1 − zt/(1 + st ))

)
]

= E[log
(
1 + ρt (1 − ρt )s2t /(1 + st )

)
] > 0,

(15)
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Fig. 3. Covariance of selection and transmission. (a) Histogram of wA,t/wB,t where wA,t and wB,t are identically and independently distributed uniform random variables
U(0, 1). (b) Histogramof st = (wA,t −wB,t )/wB,t . (c) Histogramof ρt ∼ Beta(1+st , 1). (d) The joint distribution of ρt and st demonstrates a positive correlation cov(st , ρt ) > 0.

and therefore it is not possible that both fixations are stochas-
tically locally stable.

Examples. First, if st and ρt are independent (cov(st , ρt ) = 0) and
st is symmetric around zero, then E[−zt/(1 + st )] > 0 (because
E[−zt/(1 + st )] = −E[ρt ] · E[st/(1 + st )] and E[st/(1 + st )] <
E[st ] = 0). Therefore, fixation of B is stochastically locally stable
and fixation of A almost surely does not occur. For example, let
st ∼ U(−1, 1) and ρt ∼ U(0, 1) independently (in particular,
cov(ρt , st ) = 0), then E[log(1 + zt )] ≈ −0.07315 and E[log(1 −

zt/(1 + st ))] ≈ 0.2337.
However, note that symmetry of st around zero provides an

advantage to phenotype B: using Jensen’s inequality, E[wA/wB] =

E[1+st ] = 1 ≤ E[1/(1+st )] = E[wB/wA]. Therefore, if we take the
i.i.d fitness random variables for A and B to be wA,t , wB,t ∼ U(0, 1),
respectively, and define st = (wA,t −wB,t )/wB,t , then neither A nor
B has an advantage, on average (i.e. E[wA,t/wB,t ] = E[wB,t/wA,t ],
see Fig. 3a), and both E[zt ] and E[−zt/(1+ st )] are positive, so that
both fixations are not stochastically locally stable, and we expect
the population to approach a polymorphic distribution.

Second, if st and ρt are not independent and cov(ρt , st ) ̸= 0, a
fixation can occur. Let wA,t , wB,t ∼ U(0, 1), st = (wA,t − wB,t )/wB,t
and ρt ∼ Beta(1+ st , 1) (a beta distribution with parameters 1+ st
and 1). The covariance of st and ρt is positive (cov(st , ρt ) ≈ 4 as
estimated by averaging over 108 random values of st and ρt ); that
is, vertical transmission ismore likelywhenA is favored (i.e. st > 0)
and oblique transmission is more likely when B is favored (i.e. st <
0; Fig. 3). Then E[log(1+ zt )] > 0 and B almost surely does not fix.
Also, E[log(1 − zt/(1 + st ))] < 0, so fixation of A is stochastically
locally stable. The opposite occurs if ρt ∼ β(1, 1 + st ) and the
covariance of st and ρt is negative (cov(st , ρt ) ≈ −4). In that case,
fixation of B is stochastically locally stable and A almost surely does
not fix.

Third, it is also possible that both fixations are not stochastically
locally stable even if st and ρt covary, but, as in the case of periodic
fluctuations, this can only occur if fluctuations in ρt are small. For
example, Fig. 4 shows the expected outcomewhen st = s and ρt =

ρ1 with probability p = 0.505, while st = −s and ρt = ρ2 with
probability 1 − p = 0.495. The blue and red areas show expected
fixation of A and B, respectively (i.e. stochastic local stability) and
the white area shows expected protected polymorphism (i.e. nei-
ther fixation is stochastically locally stable).

2.4. Finite population size

To include the effects of random genetic drift due to finite pop-
ulation size in the above deterministic model, we follow Ram et al.
(2018) and develop a diffusion approximation. In Ram et al. (2018)
only selection fluctuated via st , but here we also have transmission
fluctuating via ρt .

We obtain a result similar to result 11 from Ram et al. (2018):
The mean µ(x) and variance σ 2(x) of the change in the frequency

Fig. 4. Stochastic local stability. Here, st = 0.05 and ρt = ρ1 with probability
p = 0.505 and st = −0.05 and ρt = ρ2 with probability 1 − p = 0.495.
The diagonal represents the case of no transmission fluctuations; Ram et al. (2018,
Fig. 2) demonstrated that with a constant transmission rate ρ = 0.1 and the above
distribution of st , neither fixation is stochastically stable.

x of phenotype A in the case of a cycling environment AkBl, where
k + l = n, are

µ(x) = Snx(1 − x), and σ 2(x) = nx(1 − x), (16)

where Sn =
∑n

t=1 zt and zt = ρtst . Furthermore, combining
Eq. (16) with eqs. 46–47 from Ram et al. (2018), we find that the
probability of fixation of phenotype A when its initial frequency is
x, is

u(x) =
1 − e−2 Sn

n x

1 − e−2 Sn
n

. (17)

From result 10 in Ram et al. (2018), u(x) is monotone increasing
in Sn/n which is the average selection coefficient of A weighted
by the vertical transmission rates ρt . Therefore, if st and ρt are
positively (negatively) correlated, Sn/n increases (decreases), and
the fixation probability u(x) increases (decreases). This occurs be-
cause selection affects only those individuals that transmit their
phenotype to their own offspring (i.e. vertically), and a fraction
1− ρt of the population is effectively masked (for better or worse)
from selection at each generation.
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2.5. Fluctuations in space

We now describe a model in which fluctuations in selection
and transmission occur in space, rather than time. Consider a
population divided to two demes. Selection (e.g. reproduction) and
transmission (e.g. learning, development) occur within the demes,
followed bymigration of sub-adults—individuals that have already
acquired their phenotype but have yet to reproduce. The frequency
of phenotype A in deme j is denoted by xj, and therefore after
selection and transmission the frequencies xsj are

xsj = ρj
wj

wj
xj + (1 − ρj)xj, (18)

where wj is the fitness of phenotype A in deme j relative to the
fitness of phenotype B; wj = wjxj + (1 − xj) is the mean fitness in
deme j; and ρj is the vertical transmission rate in deme j.

Following migration, the frequencies of A in the two demes are

x′

1 = (1 − m1)xs1 + m1xs2,
x′

2 = m2xs1 + (1 − m2)xs2,
(19)

where 0 ≤ m1,m2 ≤ 1/2 are the migration rates, such that m1
is the fraction of the population of deme 1 replaced by individuals
from deme 2, and vice versa for m2. This is a two-deme stepping-
stone migration scheme (Karlin, 1982, eq. 2.17). Analysis of this
general model is difficult, though some analytical results may be
attained (Karlin, 1982, see Principle 6.1).

Asymmetric migration and symmetric selection. Fig. 5 shows some
numerical results for the case of symmetric selection, w1 =

1/w2 = w > 1. We focus on composite parameters of the
model: m1/m2, on the x-axis, is the ratio of migration rates into
deme 1 and deme 2; when this ratio is large, deme 1 accepts more
migrants than deme2.ρ1/ρ2 on the y-axis is the ratio of the vertical
transmission rates in deme 1 and deme 2; when this ratio is large,
individuals in deme 1 use vertical transmission more often than
individuals in deme 2.

The results demonstrate that fixation of phenotype A is stable
if migration to and oblique transmission within deme 1, where
A is favored, are higher than in deme 2. The opposite is true for
phenotype B. A protected polymorphism exists if neither fixation
is stable: if migration ratios are positively correlated – vertical
transmission occurs more often in the deme that accepts more
migrants – or if both ratios are close to unity, that is, the differences
between the demes in terms of migration and transmission are
small (Fig. 5).

Symmetric migration and selection. In the case of symmetric mi-
gration m1 = m2 = m occurring after symmetric selection w1 =

1/w2 = w > 1, the recursions (18) and (19) become

x′

1 = (1 − m)x1
(
ρ1

w

w1
+ 1 − ρ1

)
+ mx2

(
ρ2

1/w
w2

+ 1 − ρ2

)
,

x′

2 = mx1
(
ρ1

w

w1
+ 1 − ρ1

)
+ (1 − m)x2

×

(
ρ2

1/w
w2

+ 1 − ρ2

)
.

(20)

This is the homogeneous stepping-stone migration scheme (Karlin,
1982, eq. 2.14).

We have the following results:

• With only oblique transmission (ρ1 = ρ2 = 0), there are only
neutral equilibria (x∗, x∗) for any 0 ≤ x∗

≤ 1.

Fig. 5. Oblique transmission and asymmetric migration. Classification of the stable
equilibrium of the system in Eqs. (18)–(19) for different ratios of the migration
rates (x-axis) and vertical transmission rates (y-axis) in the two demes. Stability
was determined for 10,000 random choices of m1 , m2 , ρ1 , and ρ2 by calculating
the leading eigenvalue of the Jacobian of the system. Blue markers denote cases in
which the leading eigenvalue of the Jacobian at x1 = x2 = 0was less than 1, leading
to fixation of B. Red markers denote cases in which the leading eigenvalue of the
Jacobian at x1 = x2 = 1 was less than 1, leading to fixation of A. Green markers
denote cases in which both leading eigenvalues were larger than 1, leading to a
protected polymorphism. Here, the fitness values are w1 = 1/w2 = 2.

• With only vertical transmission (ρ1 = ρ2 = 1), the fixation
equilibria (0, 0), (1, 1) are unstable and there exists a pro-
tected polymorphism

x∗

1 =
w − 1 − m(w + 1) +

√
∆

2(w − 1)
,

x∗

2 = 1 − x∗

1,

(21)

where ∆ = m2(w + 1)2 + (1 − 2m)(w − 1)2.
• With only vertical transmission in one deme (ρ1 = 1) and a

combination of both vertical and oblique transmission in the
other deme (ρ2 = ρ), fixation of B is unstable, and fixation of
A is stable if and only if the vertical transmission rate in deme
2 is below ρ̂; that is,

ρ < ρ̂ =
m

m + (1 − m)(w − 1)
< 1, (22)

or if the migration rate is above m̂; that is,

m > m̂ =
ρw − 1
ρw + 1

. (23)

The proofs of (22) and (23) are in the Appendix.

Examples. Figs. 6, 7 show the stable frequencies of phenotype
A (Eq. (21)) and the stable population mean fitnesses in the two
demes with symmetric selection where A is favored in deme 1 and
B is favored in deme 2with similar selection intensities. Notably, in
the absence of oblique transmission (Fig. 7, left column), migration
decreases the differences between the demes and reduces the
population mean fitnesses. With some oblique transmission, but
equal in both demes, results are similar (not shown). However, if
oblique transmission is stronger in deme 2 than in deme 1 (Fig. 7,
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middle and right columns), the stable frequency of A increases
in both demes. Therefore, the mean fitness in deme 1 decreases
to a lesser extent than in deme 2, and even increases when the
migration rate is high enough.

The polymorphism (x∗

1, x
∗

2) (Eq. (21)) is protected when trans-
mission rates are equal, but not when transmission rates differ
enough and migration is strong enough, in which case fixation of
phenotype A is stable. For example, with enough oblique trans-
mission (ρ2 < ρ̂) in deme 2, phenotype A fixes, and the more
migration, the less oblique transmission is required to fix A (see
shaded areas in Fig. 6). Similarly, with enough migration (m > m̂),
phenotype A fixes, and the more oblique transmission in deme 2,
the less migration is needed to fix A (see shaded area in Fig. 7).

3. Discussion

Most models of cultural transmission assume a fixed relative
rate atwhich differentmodes of transmission – vertical, horizontal,
or oblique – occur. Here we explored a model in which the relative
rates of vertical and oblique transmission fluctuate over time,
either periodically or randomly, or over space.

Comparing our results with previous results from a similar
model with a fixed rate of vertical transmission (Ram et al., 2018),
we find that a protected polymorphism can be maintained only if
fluctuations in the rate of vertical transmission are small, and that
stronger selection on the transmitted trait permits larger fluctua-
tions in the rate of transmissionwhile still maintaining a protected
polymorphism. In the case of fluctuations in space, the greater
the separation between the two populations (i.e., the smaller the
migration rates) the larger can be the fluctuations that maintain
polymorphism; however, as migration becomes more frequent,
even small differences in the vertical transmission rate will elimi-
nate the polymorphism. When fluctuations are stochastic, we find
that if vertical transmission covaries with selection, the phenotype
that has a higher probability of being vertically transmitted when
it is favored will likely eventually fix in the population. However, if
transmission and selection are independent, then a polymorphism
can be maintained if selection does not, on average, favor one
phenotype over the other.

The interaction between spatially varying selection and trans-
mission is shown in Figs. 6 and 7 to depend on migration in a
complex way. However, our two-dememodel does not exhibit the
kind of complexity seen in Ram et al. (2018), where the period of
environmental fluctuation determined whether the vertical trans-
mission rate ρ that maximized the population mean fitness was
the same as the evolutionarily stable value.We can speculate that a
modelwithmore sub-populations and amore geographically com-
plicated fitness regime might show less predictable relationships
between transmission and selection.

An interesting model with a similar structure was studied by
Bisin and Verdier (2001): it included both vertical (i.e. ‘‘socializa-
tion in the family’’) and non-vertical (i.e. ‘‘imitation from society’’)
transmission. They focused on a frequency-dependent transmis-
sion mode called cultural substitution, in which a parent invests
more in child socialization if the parental trait is rare. Their model
(Eq. (12)) is a continuous-time equivalent of our model (Eq. (1))
that does not distinguish between horizontal and oblique trans-
mission; considers constant, rather than fluctuating, selection; and
includes endogenously fluctuating transmission due to changes in
trait frequency. They found that under some selection schemes, in
which parents choose how many offspring to produce, either an
unstable polymorphism (Proposition 4) or a stable polymorphism
(their Proposition 5) exists, depending on the costs associatedwith
the transmission mode. Furthermore, in the absence of selection,
trait polymorphism is neutral in ourmodel (set s = 0 in Eq. (1)), but

Bisin and Verdier (2001) found that frequency-dependent trans-
mission leads to a globally stable polymorphism (their Proposition
1).

An important topic in cultural evolution is the evolutionary
dilemmaknownasRogers’ paradox (Rogers, 1988),which is similar
to the problem of the maintenance of cooperation: social learners
(aka cheaters) benefit from new cultural traits invented by individ-
ual learners (aka cooperators) without paying the cost associated
with individual learning. Several authors usedpopulation structure
to help explain the maintenance of individual learning in this sce-
nario, paralleling the use of population structure for explaining the
maintenance of cooperation. For example, Kobayashi and Wakano
(2012) modeled both individual learning and social learning via
oblique transmission in an infinite island model. Their results
show that spatial subdivision favors individual learning over social
learning. Maintenance of individual learning is also crucial for
cumulative culture, inwhich cultural innovationsmade by individ-
ual learning are transmitted and accumulated via social learning.
Similarly to the effect of cheating in public goods games, social
learning can cause the collapse of cumulative culture (Wakano
and Miura, 2014). To resolve this dilemma, Ohtsuki et al. (2017)
modeled individual and social learning in a structured population,
but allowed social learning to be at least partially vertical, rather
than completely horizontal or oblique. They demonstrated that
if kin-selection has a significant effect on the dynamics, then in-
creases in inclusive fitness due to vertical transmission can negate
the cost of individual learning, at least to some extent, and al-
low for high levels of cumulative culture to evolve. Mullon et al.
(2017) have also studied a model of individual and social learning
that includes both vertical and oblique transmission in a cumula-
tive culture setting. Their results show that the effect of vertical
transmission on maintenance of individual learning is stronger if
vertical transmission is more efficient than oblique transmission,
i.e. ‘‘if offspring learn better from relatives, or if parents devote
more teaching effort towards offspring’’. Following our hypothesis
that the transmission mode fluctuates over time and space, we
suggest that such fluctuations could facilitate the maintenance of
individual learning, and therefore cultural accumulation: when
vertical transmission is high, innovation by individual learning
will be common due to increased inclusive fitness; when oblique
transmission is high, new cultural traits will quickly spread via
social learning.

One caveat of our model is the use of the ‘‘phenotypic gambit’’
(Grafen, 1984): the assumption that the transmission mode itself
is strictly vertically transmitted. Although there is some evidence
that the tendency to use different learning mechanisms is genet-
ically transmitted (Foucaud et al., 2013), this assumption can be
challenged: individuals may be able to learn how and when to
learn, in what has been called ‘‘social learning of social learning’’
(Mesoudi et al., 2016). Indeed, it has been demonstrated that
guppy fish are more likely to learn from others if previous social
experiences provided benefits (Leris and Reader, 2016). It is also
possible that the transmission mode is regulated. For example,
Farine et al. (2015) found that zebra fish switch from vertical
to oblique transmission after exposure to stress hormones. Our
model accounts for cases in which the entire population changes
its transmissionmode due to stress, but not for cases in which only
specific (e.g. stressed) individuals do so.

Our spatial model (Eqs. (18)–(19)) assumes migration by sub-
adults, or more specifically, that migration follows cultural
transmission, which occurs at the natal deme. This is a necessary
assumption for modeling vertical transmission, which cannot oc-
cur after offspring migrate out of their natal deme, leaving their
parents behind. Other authors have taken a different approach
when focusing on oblique transmission: for example, Kobayashi
and Wakano (2012) assumed migration by juveniles, followed
by a combination of individual and social learning at the new
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Fig. 6. Oblique transmission and migration: effect of transmission. The figure shows x∗

i the stable frequencies of A (top row) and w∗

i the stable population mean fitnesses
(bottom row) in the two demes. Selection is symmetric between the two demes (the fitness of phenotype A is w1 = 2 in deme 1 and w2 = 0.5 in deme 2; the fitness of
phenotype B is 1 in both demes). The vertical transmission rate is ρ1 = 1 in deme 1, and ρ2 (x-axis) in deme 2. Migration rate m is 0.05, 0.1, or 0.25 in the left, middle, and
right columns, respectively. The shaded area denotes stable fixation of phenotype A according to inequality (22). Lines are drawn by iterating Eqs. (20) until frequencies in
consecutive generations differ by less than 10−4 , starting with equal frequencies.

Fig. 7. Oblique transmission and migration: effect of migration. The figure shows x∗

i , the stable frequencies of A (top row), and w∗

i , the stable population mean fitnesses
(bottom row), in the two demes. Selection is symmetric between the two demes (the fitness of phenotype A is w1 = 2 in deme 1 and w2 = 0.5 in deme 2; the fitness of
phenotype B is 1 in both demes). The vertical transmission rate is ρ1 = 1 in deme 1, and ρ2 = 1, 0.4, and 0.2, in the left, middle, and right columns, respectively, in deme 2.
Migration ratem is on the x-axis. The shaded area denotes stables fixation of phenotype A according to inequality (23). Lines are drawn by iterating Eq. (20) until frequencies
in consecutive generations differ by less than 10−4 , starting with equal frequencies.

deme. Further work could investigate the evolution of vertical
vs. horizontal transmission, in which case migration could occur
before transmission, rather than after.

An extension of our model could incorporate more sophisti-
cated oblique transmission schemes (Creanza et al., 2017, Fig-
ure 3). For example, conformity –preference for learning a frequent
phenotype – has been demonstrated in wild monkeys (van de
Waal et al., 2013) and birds (Aplin et al., 2015). We suggest that
the specific mode of oblique transmission can also fluctuate over
time, so that individuals can, for example, conform to the frequent

phenotype under benign conditions, and prefer a rare phenotype
under stressful conditions; more generally, the mode of transmis-
sion could be plastic and viewed as a reaction norm to variable
environments. Additionalworkwill be required to understandhow
such fluctuations affect the population dynamics.
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Appendix

Proof of Eqs. (22) and (23). When ρ1 = 1 and ρ2 = ρ, with
0 ≤ ρ ≤ 1, the stability of (0, 0) (i.e. fixation in B) is determined
by the characteristic polynomial of the Jacobian of (20), f0(x) =

ax2 + bx + c , with coefficients

a = 1, b = −(1 − m)(w + 1 − ρ + ρ/w),
c = (1 − 2m)(ρ + w(1 − ρ)).

(24)

First, the discriminant ∆ = b2 − 4ac form = 0 andm = 1/2 is

∆(m = 0) =

( (w + ρ)(w − 1)
w

)2
, and

∆(m = 1/2) =

(w2
+ w(1 − ρ) + ρ

2w

)2
,

(25)

which are both positive. Writing ∆ as a polynomial inm, g(m), the
discriminant of g(m) is(
−16(w + ρ)2(w − 1)2

(
w(1 − ρ) + ρ

)
/w2),

which is negative, and therefore the discriminant ∆ of f0(x) is
positive for any 0 ≤ m ≤ 1/2 and f0(x) has two real roots.

Second, a > 0, b < 0, and c > 0 so f0 is positive with a negative
derivative at x = 0 and a positive derivative at infinity. Therefore
stability of (0, 0) can be determined by the sign of f0(1) = a+b+c .
For ρ = 1 we have a + b + c = −

1−m
w

(w − 1)2 < 0. For ρ = 0
we have a + b + c = −m(w − 1) < 0. Finally, a + b + c is a linear
function of ρ and therefore a + b + c < 0 for any 0 ≤ ρ ≤ 1, so
f0(x) has a real root greater than one, and (0, 0) is unstable.

The stability of (1, 1) (i.e. fixation in A) is determined by the
characteristic polynomial f1(x) = ax2 + bx + c with coefficients

a = 1, b = −(1 − m)(wρ + 1 − ρ + 1/w),
c = (1 − 2m)(ρ + (1 − ρ)/w).

(26)

First, the discriminant ∆ of f1(x) = 0 is b2 − 4ac for m = 0 and
m = 1/2 is

∆(m = 0) =

( (wρ + 1)(w − 1)
w

)2
, and

∆(m = 1/2) =

(w2ρ + w(1 − ρ) + 1
2w

)2
,

(27)

which are both positive. Writing the discriminant ∆ of f1(x) as a
polynomial inm, g(m), the discriminant of g(m) is(
−16(wρ + 1)2(w − 1)2

(
ρw + 1 − ρ

)
/w3),

which is negative, and therefore ∆ is positive for any 0 ≤ m ≤ 1/2
and f1(x) has two real roots.

Second, a > 0, b < 0, and c > 0 so f1 is positive with a negative
derivative at x = 0 and a positive derivative at infinity. Therefore,
fixation of A is stable if and only if both f1(1) = a+b+c and f ′

1(1) =

2a + b are positive. Now f1(1) > 0 if ρ < m
m+(1−m)(w−1) = M1, and

f ′

1(1) > 0 if ρ <
m(w+1)+w−1
(1−m)w(w−1) = M2. The difference M1 − M2 is a

quadratic in w with a negative discriminant 2m − 1 and negative
value −1/2 at (w = 2,m = 0), so M1 < M2 for any w > 1 and
0 ≤ m ≤ 1/2.

Therefore, fixation of A is stable if ρ < M1 =
m

m+(1−m)(w−1) (22).
By rearranging this inequality, we can also obtain an expression for
m (23).
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