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SUMMARY

An adverse intrauterine environment is associated
with long-term physiological changes in offspring.
These are believed to be mediated by epigenomic
marks, including DNA methylation (DNAm). Changes
in DNAm are often interpreted as damage or plastic
responses of the embryo. Here, we propose that sto-
chastic DNAm variation, generated during remodel-
ing of the epigenome after fertilization, contributes
to DNAm signatures of prenatal adversity through
differential survival of embryos. Using a mathemat-
ical model of re-methylation in the early embryo, we
demonstrate that selection, but not plasticity, will
generate a characteristic reduction in DNAm vari-
ance at loci that contribute to survival. Such a reduc-
tion in DNAm variance was apparent in a human
cohort prenatally exposed to the Dutch famine, illus-
trating that it is possible to detect a signature of
selection on epigenomic variation. Selection should
be considered as a possible mechanism linking pre-
natal adversity to subsequent health and may have
implications when evaluating interventions.

INTRODUCTION

Human and animal studies show intriguing associations between

adverse events in utero and late-life physiology, behavior, and

life history (Gluckman et al., 2007; Brakefield et al., 2005). These

associations are widely believed to be mediated by persistent

effects of prenatal adversity on epigenomic marks (Gluckman

et al., 2007; Heijmans et al., 2009), that is, molecular marks

that may bring about mitotically heritable differences in gene

expression potential (Jaenisch and Bird, 2003), such as DNA
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methylation (DNAm). DNAm can control, stabilize, and reflect dif-

ferences in gene expression potential. DNAm is known to show

both positive and negative association with gene expression and

is established with DNA methyltransferases and removed in a

complex series of reactions mediated by TET enzymes involving

hydroxylation of the methyl group. There is substantial evidence

for associations between adverse maternal exposures during

early gestation and persistent changes in the DNAm profiles of

offspring (Sales et al., 2017). However, the mechanism underly-

ing these associations are still poorly understood. Two alterna-

tives are frequently considered. First, adverse conditions in utero

may compromise the establishment and maintenance of DNAm

(Heijmans et al., 2009). Second, DNAmmay be actively modified

in the embryo to enable a match between its phenotype and the

current or future environment (Gluckman et al., 2007). If environ-

ments do not match the prediction in utero, plasticity can cause

maladaptation, and this is commonly invoked to explain the in-

crease in non-communicable disease in many parts of the world.

Another possibility that has been less explored is that embryos

with particular epigenomic profiles have different survival proba-

bilities in utero (Tobi et al., 2014). Selection on unbiased variation

in DNAm, what we refer to as ‘‘epigenetic selection,’’ is possible

if three key conditions hold: (1) there is stochastic variation in

DNAm among embryos, (2) specific DNAm patterns confer dif-

ferential prospects of embryo survival under adverse conditions,

and (3) DNAmpatterns arising early in life can be transmitted dur-

ing cell division and persist during development and, in some

cases, even into adulthood. There is increasing evidence in the

literature that these conditions are met.

Single-cell transcriptome and methylome studies have re-

vealed stochastic variation in both gene expression and DNAm

between genetically identical cells in common environments (An-

germueller et al., 2016). Stochastic genome-wide differences in

DNAm may arise during early development as the mammalian

genome is stripped of its DNAm after fertilization, followed by a

period of global re-methylation in the post-implantation embryo
thors.
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(Messerschmidt et al., 2014). Transient gene expression

changes and regulatory circuits controlled by transcription fac-

tors play a crucial role in establishing DNAm patterns (Eckers-

ley-Maslin et al., 2016; Greenberg et al., 2017), for example,

because the binding of transcription factors to promoter and

enhancer regions can locally decrease the probability that cyto-

sines become methylated (Bonder et al., 2017; Maurano et al.,

2015).

Successful embryonic implantation and further development

require the expression of specific genes to match the blastocyst

physiology with the conditions in the uterus and the endome-

trium (Altmäe et al., 2012). Such genes are associated with tran-

scription regulation, cell adhesion, and signal transduction in the

pre-implantation stage, and with cell growth and signaling path-

ways. The extent to which these processes are aligned is ex-

pected to vary among embryos. This will create variation in the

likelihood of successful implantation and development. For

instance, the success rate of assisted reproduction is linked to

the appropriate degree of global re-methylation of the early blas-

tocyst (Li et al., 2017a). Indeed, in humans more than half of all

embryosmay fail to implant or abort soon after implantation (Wil-

cox et al., 1999). This number can be substantially higher under

maternal adversity (Bellver et al., 2013; Dechanet et al., 2011; Li

et al., 2017b). We therefore expect that maternal adversity could

generate intense selection on gene expression and the associ-

ated epigenomic profiles, in particular during implantation.

The DNAm maintenance machinery enables transmission of

established DNAm profiles during cell division (Jaenisch and

Bird, 2003), although DNAm is continuously remodeled during

fetal development and cell differentiation (Slieker et al., 2015).

In particular, DNAm patterns established early in development

may be maintained if these regions do not require extensive re-

modeling later on (Dominguez-Salas et al., 2014).

Because epigenetic selection removes particular DNAm vari-

ants from the population, it may change the distribution of

DNAm in survivors. Thus, it should be possible to detect signa-

tures of epigenetic selection in utero from DNAm data in human

populations (similarly to the rationale for detecting signatures of

selection in DNA sequence data). With the aim to derive testable

predictions, we implemented a mechanistic model that captures

the essentials of the dynamics between transcription factor bind-

ing and re-methylation (Chen et al., 2013) and extended this

model to encompass multiple cells in a whole embryo. By simu-

lating both the plasticity and epigenetic selection scenarios, we

predict that epigenetic selection, but not plasticity, should result

in a reduction in DNAm variance at CpG sites that confer a selec-

tive advantage. Finally, we illustrate how empirical DNAm data

can be used to test for this signature of epigenetic selection

and find evidence for reduced variance in a cohort exposed to

the Dutch famine, a severe wartime famine at the end of World

War II (Lumey et al., 2007).

RESULTS

ModelingDynamic TFBSMethylation duringEpigenomic
Remodeling
To generate testable predictions, we modified the mechanistic

model of Chen et al. (2013) to model the relationship between
transcription factor binding and re-methylation (Figure S1).

Although this model excludes significant biological details,

these details matter only insofar as they contribute to consistent

effects of maternal adversity on transcriptional regulation (i.e.,

plasticity) or embryo survival (i.e., selection), as these are the

processes that generate differences in DNAm among exposed

and unexposed groups. We therefore omit several molecular

intermediates in the DNAm machinery, intermediates in the

process of de- and re-methylation, and other epigenomic marks.

Instead, we focus on the variation in DNAm caused by the

inherent stochasticity in DNAm and transcription factor binding,

transcription factor concentration, and the effects of gene

expression on implantation success. Here, we provide only a

brief and non-technical summary of the model. The details,

including exploration of alternative assumptions and robustness

analyses, are provided in the STAR Methods.

Each of our simulations started with 100 embryos, and every

embryo consisted of 50 diploid cells containing 75 independent

genes. We reduced the complexity of gene regulation to a

representation by one transcription factor binding site (TFBS)

per gene, assuming ten CpG dinucleotides (CpGs) per TFBS.

Because we were interested in the consequences of purely sto-

chastic variation in DNAm, we incorporated no genetic variation

between different embryos and no sequence variation between

different TFBS.

Our model starts at pre-implantation, when the genome is de-

methylated andnoneof theCpGs in theTFBSaremethylated.We

modeled thedynamicsof re-methylationofCpGswithin theTFBS

as a stochastic process that depends on transcription factor (TF)

concentration, later referred to as [TF]. We assumed equal con-

centrations of a particular TF in all 50 cells constituting an embryo

in silico. When a TFBS is occupied by a TF, the likelihood that a

CpG in a cell will become methylated is decreased (Domcke

et al., 2015), as TF binding blocks access for themethylationma-

chinery (Bonder et al., 2017). This process is modeled by simply

setting a probability for re-methylation when a TFBS is tempo-

rarily vacant. In addition, methylation of a CpG inhibits TF binding

(Yin et al., 2017), and hence the likelihood that a neighboring CpG

becomesmethylated increases. The duration a TFBS is boundby

a TF corresponds with the level of gene expression. Because

these processes follow simple Michaelis-Menten kinetics, the

binding of a TF and the methylation machinery to a TFBS are

inherently stochastic. As a result of these dynamic kinetics,

bothmethylation frequencies and gene expression levels are var-

iable among individual cells and embryos. Finally, we assume

that DNAm is transmitted during cell division once re-methylation

is completed, and hence, any differences in DNAm established

early in life will be detectable in post-natal life.

To generate distributions of DNAm in samples of individuals,

we first calculated the mean DNAm for each individual CpG

within a TFBS over the 50 diploid cells (each of which is 0%,

50%, or 100% methylated) of an individual embryo at the end

of each simulation. We then quantified the mean and variance

in methylation frequency for each single CpG between embryos.

TF binding is positively related to gene expression of the target

gene, which is also quantified as the average gene expression

of an individual embryo by taking the mean over all cells. The

default state is a simulation without maternal adversity. Under
Cell Reports 25, 2660–2667, December 4, 2018 2661
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empirical DNAm dataB Figure 1. Comparison of Modeled and

Empirical DNAm Data

Panels show the trend (locally estimated scatter-

plot smoothing [LOESS] with span = 1.0 in blue

and the 95% confidence interval [CI] in gray, as

calculated within the R ggplots2 package) be-

tween mean methylation (x axis) and SD (y axis).

(A) DNA methylation (DNAm) for 750 simulated

CpGs within 75 TFBS.

(B) DNAm for 750 random CpGs from 463 controls

from the Dutch Hunger Winter Families Study.

See also Figure S1.
these assumptions, themodeled distribution of DNAm is charac-

terized by amajority of CpGs with methylation levels close to 0%

and 100% and intermediately methylated CpGs with peak vari-

ance at 50% DNAm, a mean-variance distribution that also ap-

plies to genome-wide DNAm arrays in whole blood from the

Dutch Hunger Winter Families Study (Tobi et al., 2015) (Figure 1).

Simulating Plasticity and Epigenetic Selection
We used the above model of re-methylation during development

to generate predictions for a series of simulations with the aim of

finding a signature of selection in DNAmdata in cohorts exposed

to prenatal adversity. First, we consider plasticity. Under this

scenario, [TF] responds in a coordinated adaptive response to

the nutritional conditions in utero. We therefore modeled plas-

ticity by increasing or decreasing [TF] upon maternal adversity

and studied its effects on the DNAm of the corresponding

TFBS. This is contrasted with epigenetic selection. Under this

alternative scenario, there are no systematic differences in [TF]

in utero. Instead, maternal adversity reduces overall embryo sur-

vival by favoring embryos with particular gene expression levels

(i.e., those favorable for successful implantation and survival). As

a consequence, there is selection of a subset of the stochasti-

cally arising DNAm profiles.

For eachsimulatedscenario,wemodeled150genes, 75 ‘‘target

genes’’ that either respond plastically (plasticity model) or influ-

ence the probability of survival (epigenetic selection model) and

75 ‘‘control genes,’’ in a population of embryos with or without

maternal adversity.At theendofeachsimulation,when the in silico

‘‘genome’’ had completed its re-methylation (i.e., theDNAm levels

remainedstable),wecharacterized the resultingDNAmpatterns in

each group of embryos. Because the number of embryos is

reduced by selection, and this may influence the comparison

with the plasticity scenario, we started these simulations with a

larger numberofembryosandused randomsubsampling tomain-

tain the same population size across all comparisons.
2662 Cell Reports 25, 2660–2667, December 4, 2018
Model Predictions for Epigenetic
Selection
Both plasticity and epigenetic selection

caused a shift in mean methylation at

the individual CpGs linked to the 75 target

genes with a role in plasticity or survival

(both increases and decreases in mean

DNAm were observed; data not shown).

Themodel simulations showed that under
plasticity, the relationship between the mean and variance in

methylation was the same in groups of exposed and unexposed

individuals (Figure 2A). In contrast, epigenetic selection reduced

the variance in DNAm at TFBSs that contribute to survival. This

reduction is modest at single CpGs but evident across the entire

range of mean DNAm levels (Figure 2B). The relationship

between the mean and variance for control genes (i.e., genes

whose expression does not contribute to embryo survival) was

unaffected by selection (Figure 2C). As expected, the disparity

in DNAm profiles between embryos surviving under adverse

conditions and controls increased with the intensity of selection,

that is, when fewer individual embryos survived (Figure 2D).

Hence, the model singles out a modest but consistent reduction

in variance in DNAm across its entire range (e.g., 0%–100%) as a

key signature of selection.

Robustness Analyses
To study the robustness of the variance reduction under epige-

netic selection, we performed simulations under different param-

eter settings, additional molecular detail, or alternative assump-

tions. In a large parameter and scenario space, variance was

reduced under selection compared with control conditions.

The results of the model were robust under conditions causing

lower DNAm maintenance and re-methylation, for instance

through a shortage of essential (micro-)nutrients for the methyl-

ation machinery, and vice versa, also when the likelihood of re-

methylation was increased (Figure S2). In the main model, we

chose to incorporate only an inverse relationship between tran-

scription and DNAm, but alternative relationships between TF

binding and the methylation machinery (Bonder et al., 2017)

did not alter the model predictions (Figure S3). Also, the number

of CpGswithin a TFBS and assuming a gradient of [TF] in the em-

bryo had no considerable effect on variance reduction under se-

lection (Figure S4). Although this shows that the predictions of

the model are robust, it is important to note that, inherent to
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Figure 2. Model Predictions for the Rela-

tionship between Mean and SD in DNAm

Blue circles and solid blue trend lines (LOESS with

span = 1.0 and 95% CI in gray, as calculated using

the R ggplots2 package) denote the observations

in the simulated embryos that do not experience

prenatal adversity (‘‘controls’’). Red triangles and

solid red trend lines (identical LOESS settings) are

the observations in simulated embryos exposed to

maternal adversity (‘‘exposed’’).

(A) Relation between mean DNAm and SD for 750

CpGs in 75 TFBS linked to genes active in the

plastic response.

(B) Relation between mean DNAm and SD for the

750 CpGs in 75 genes linked to survival when 50%

of the exposed embryos fail to survive.

(C) The same selection scenario as in (B) but for

the 750 CpGs in the 75 TFBS linked to genes that

do not contribute to the likelihood of survival (i.e.,

the control gene set).

(D) SD of DNAm under different cut-offs for

survival.

See also Figures S2 and S3 and Table S3.
the stochastic nature of the modeled re-methylation and the

selection process itself, the effect sizes were variable across

simulations.

Evaluating Model Predictions in Empirical Data
To illustrate how to test for this reduction in variance using

empirical DNAm data on populations, we revisited genome-

wide DNAm data in whole blood for 422 individuals prenatally

exposed to the Dutch famine and 463 unexposed (sibling) con-

trols (Table S1) (Tobi et al., 2015). The Dutch famine is consid-

ered a quasi-experimental setting during which the number of

births dropped to almost 50% of normal levels (Susser and

Stein, 1994) because of a combination of reduced conception,

lower implantation success, and an increased rate of fetal

deaths in the famine-exposed population (Stein and Susser,

1975).

We compared the variance in DNAm in prenatally exposed

individuals and controls across all individual CpGs putatively

associated with famine exposure (at p < 0.001) during 10 week

time frames or during any of these gestational time frames

(‘‘any famine exposure’’). These loci are enriched for CpGs

with intermediate levels of DNAm at (developmental) enhancers
Cell Repor
and promoters devoid of CpG islands

(Tobi et al., 2014). These famine-associ-

ated CpGs were contrasted to 1,000

randomly selected control CpGs that

had a similar mean and variance as the

famine-associated CpGs (in the prena-

tally unexposed) but that were not associ-

ated with prenatal famine exposure (p >

0.2). Selecting a set of CpGs with the

same mean-variance structure ensures

that the comparison is not confounded

by differences in the mean and variance

of the selected subset itself.
The variance in DNAm at famine-associated CpGs was signif-

icantly lower in individuals whose mothers were exposed to the

height of the famine in the 10 weeks before conception (DSD =

�0.2%, pFDR = 0.031; Table 1; Figure 3A). Although similar

reductions were suggested for individuals exposed during other

exposure periods (�0.2%RDSDR�0.4%; Table 1), the reduc-

tion was statistically significant for weeks 21–30 of gestation only

(DSD = �0.3%, pFDR = 0.031; Figure 3B). Both sets of ‘‘control’’

CpGs showed no difference in variance. Similar results were

obtained when the exposed individuals were compared with

their same-sex, unexposed sibling controls (Table S2).

DISCUSSION

Ourmain aims in this study were to (1) examine selection on gene

expression profiles in early embryos as a possible explanation

for the observed associations between prenatal adversity and

DNAm in children and adults, (2) use a basic mechanistic model

in combination with individual-based simulations to identify pre-

dictions for the effect of this selection on DNAm patterns in

exposed and control populations, and (3) demonstrate how to

test these predictions on empirical DNAm data and provide a
ts 25, 2660–2667, December 4, 2018 2663



Table 1. Difference in Variance for Differentially Methylated CpGs between Exposed and Control Groups for the Different Periods of

Prenatal Exposure to the Dutch Famine

Famine-Associated CpGs 1,000 Unaffected CpGs

N Probes DSD (%) Corra DSD (%) p Permutationsb p FDR Corrc DSD (%) p Permutationsb

Any famine exposure 543 �0.1 0.0 0.32 0.32 0.01 0.74

Exposure period specific

�10 to 0 404 �0.2 �0.2 0.010 0.031 0.0 0.67

Weeks 1–10 669 �0.4 �0.2 0.21 0.32 0.1 0.58

Weeks 11–20 520 �0.4 �0.3 0.064 0.13 0.1 0.60

Weeks 21–30 506 �0.3 �0.3 7.3 3 10�3 0.031 0.0 0.52

Week 31 to delivery 622 �0.2 �0.1 0.29 0.32 0.0 0.47

See also Tables S1 and S2. Corr, correlation; FDR, false discovery rate.
aThemean difference in SD between exposed and controls across CpGs associatedwith prenatal famine exposure; beta values corrected for age, sex,

technical variation, and cellular heterogeneity.
bp value obtained by 100,000 permutations for model noted above.
cThe mean difference in SD between exposed and controls across 1,000 probes not associated with prenatal famine exposure; corrected as noted

above.
first assessment of the merits of the hypothesis. The model

predicts that selective survival of embryos leads to reduced

variance in DNAm at CpGs in groups of individuals exposed to

adverse intrauterine exposures as compared with unexposed

groups. This indicates that reduced variance in DNAm observed

in a population can be a signature of selection during gestation.

Our showcase of how to test this hypothesis suggests that

selection is a tenable explanation for the DNAm patterns associ-

ated with maternal adversity during the earliest stages of devel-

opment in utero.

Epigenetic selection is particularly important to consider when

prenatal adversity occurs shortly after conception because mor-

tality during human embryonic development is highest directly

before and after implantation (Wilcox et al., 1999). This period

is largely captured in the Dutch Hunger Winter Families Study

by those pregnancies exposure to famine for at least 10 con-

tinues weeks before conception (Lumey et al., 2007). These indi-

viduals were conceived at the height of the famine, when rations

fell to 500 kcal/day, and a DNAm variance reduction in this

exposed group was indeed statistically supported. There was

a similar variance reduction for individuals exposed anytime

during the first two trimesters, although this was statistically sig-

nificant only for gestational weeks 21–30, which is the period

with the largest number of prenatally exposed individuals and

hence the largest study power to detect a statistical difference

from controls. Overall, these preliminary results indicate that

the DNAm pattern associated with early gestational adversity

may have been generated by the selective survival of embryos

rather than by embryo plasticity.

However, detecting a signature of selection does not rule out

that DNAm in embryos could also respond directly to maternal

adversity; both processes may occur simultaneously (Bruckner

and Catalano, 2018). Plasticity may be a better explanation

for mean changes in DNAm that occur late in gestation, when

mortality is lower, and adjusting its physiology will likely aid the

fetus to better cope with the adverse intrauterine environment.

Furthermore, closer to birth, environmental cues might become

relevant for predicting post-natal conditions (Nettle et al.,
2664 Cell Reports 25, 2660–2667, December 4, 2018
2013). An interesting example to explore may be the well-estab-

lished link between growth in late gestation, reduced nephron

number, and its associated increased risk for hypertension (He

et al., 2010). However, directly testing the adaptive plasticity hy-

pothesis in humans is difficult (Brakefield et al., 2005), because

reliable estimates on Darwinian fitness are difficult to obtain in

modern societies. Ruling out epigenetic selection may therefore

be especially important to studies that invoke adaptive plasticity

to explain associations between maternal adversity, DNAm, and

phenotypic characters.

Our test for a signature of epigenetic selection in empirical

data of the Dutch famine is only a first step to investigate the

scope for the hypothesis. More detailed studies are needed.

Only small differences in variance were observed in the quasi-

experimental setting of the Dutch famine (effect sizes up to

0.1 SDs), despite the severe nutritional deprivation. This may

stem partly from our inclusion criterion of nominally significant

CpGs that may contain false positives, the fact that we measure

the DNAm patterns in blood six decades after the exposure,

and the stochastic, and hence noisy, nature of the processes

possibly at play. Our simulations suggest that the stochastic

nature of re-methylation and selection means that large and

multiple datasets are required to robustly identify regions with

a lower than expected DNAm variance. The recent formation

of large consortia with detailed information on contemporary

prenatal conditions and genome-scale DNAm data holds great

potential in this respect (Felix et al., 2017). Experimental studies

in animal models are another promising route to provide more

direct tests for epigenetic selection.

From a theoretical perspective, it will be important to also

study how different factors such as age and tissue heterogene-

ity, DNA sequence variation, and the developmental process

itself (e.g., canalization; Pujadas and Feinberg, 2012) can

affect the variance of DNAm. In particular, a reduced variance

could reflect a more canalized regulation of gene expression.

Although the key predictions were unaffected by a number of

mechanistic details regarding the process of re-methylation,

including that plasticity is caused by shortage of substrate or



A B Figure 3. Empirical Data for the Relation-

ship between Mean and SD of DNAm Data

in the Dutch Hunger Winter Families Study

Blue circles and solid blue trend lines (LOESS with

span = 1.0 and 95% CI in gray, as calculated using

the R ggplots2 package) denote embryos that did

not experience prenatal exposure to the famine

(‘‘controls’’). Red triangles and solid red trend lines

(identical LOESS settings) are the data for embryos

exposed to maternal adversity (‘‘exposed’’).

(A) Four hundred four CpGs associated with pre-

conception famine exposure (p<0.001).

(B) Five hundred six CpGs associated with famine

exposure during weeks 21–30 of gestation and

controls (p<0.001).

See also Tables S1 and S2.
co-factors (e.g., a lower rate of re-methylation and mainte-

nance), it is important to note that themagnitude of the reduction

in variance can be affected. In fact, other forms of selection

(e.g., increased survival of both extremes of a distribution) may

increase the variance within a population. Another extension of

our model is to impose selection within, rather than between,

blastocysts. Selection of particular cells within an embryo occurs

during normal development (Sancho et al., 2013) and may like-

wise be hypothesized to play a role in fetal programming. Finally,

although we make no assumptions about whether epigenetic

selection per se is adaptive to mothers, it may be interesting to

explore the conditions under which it evolves under natural

selection (van den Heuvel et al., 2016; Nettle et al., 2013).

Understanding the mechanisms of DNAm changes in an

adverse prenatal environment has practical and clinical implica-

tions. Under epigenetic selection, aberrant DNAm profiles of sur-

vivors are not caused by adversity during early life; they arise from

the effects of stochastic variation in DNAmon the odds of implan-

tation or post-implantation survival. This hypothesis makes no

assumption about specific adaptive or maladaptive conse-

quences of those DNAm profiles that are observed later in life.

By contrast, under adaptive plasticity it is posited that an adverse

maternal environment induces specific epigenomic profiles and

that such adaptations may increase the risk for disease in a mis-

matched post-natal environment (Gluckman et al., 2007). Hence,

although prevention or intervention measures in fetal life could

mitigate or neutralize adverse plastic responses, under epigenetic

selection, such interventions would merely reduce the selection

pressureandnotnecessarilyprevent adverseepigenomicprofiles

that arise stochastically. Thus, the distinction between induction

of DNAm profiles versus selection of pre-existing DNAm profiles

may be important for managing the expectations of intervention

programsand theongoingdiscussion of (epi)genetic determinism

and concerns that we are placing blame on past generations for

the diseases of our own (Waggoner and Uller, 2015).

In summary, we propose that differential survival of embryos

with particular epigenomic profiles (‘‘epigenetic selection’’) is a

tenable explanation for the observed late-life differences in
Cell Repo
DNAm after early prenatal adversity in hu-

mans. By formulating and modeling this

alternative, we show that it generates pre-
dictions that can be tested using data that are available in human

populations. Epigenetic selection needs further consideration as

a biological mechanism underlying the association of adversity in

early life with health in adulthood.
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standard deviation of CpG site methylation frequencies

This paper GitHub: https://github.com/ecoevomicsjoost/

embryo_selection_model

Software and Algorithms

R package permute version 0.9-0 CRAN https://cran.r-project.org/web/packages/

permute/index.html

R version 3.4.1 CRAN https://cran.r-project.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Dr. B. T. Heijmans (B.T.

Heijmans@lumc.nl)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study subjects
The Dutch Hunger Winter Families study is described in detail elsewhere (Lumey et al., 2007). In short, historical birth records were

retrieved from three institutions in famine-exposed cities for singleton births between 1 February 1945 and 31 March 1946. Infants

were identified whose mothers were exposed to the famine during or immediately preceding that pregnancy and as time-controls

infants whose mothers were not exposed to famine during pregnancy from 1943 and 1947. Both groups were invited to participate

in a telephone interview and in a clinical examination, together with a same-sex sibling not exposed to the famine (as a family-control).

We conducted 1,075 interviews and 971 clinical examinations (of 345 clinic births without a matched sibling and 313 with a matched

sibling) between 2003 and 2005.

Ethics approval and consent to participate
The Dutch Hunger Winter Families study was approved by the Institutional Review Board of Columbia University Medical Center and

by theMedical Ethical Committee of Leiden University Medical Center and the participants provided verbal consent at the start of the

telephone interview and written informed consent at the start of the clinical examination.

Famine exposure
Food rations were distributed centrally and below 900 Kcal/day between November 26, 1944 and May 15, 1945 and the percentage

of calories from proteins, fat, and carbohydrates was constant during the famine period (Burger et al., 1948). We defined famine

exposure by the number of weeks during which the mother was exposed to < 900 kcal/day after the last menstrual period (LMP)

recorded on the birth record (or when missing or implausible [12%], as estimated from the LMP calculated from the birth weights

and the date of birth (Lumey et al., 2007). We considered the mother exposed in gestational weeks 1-10, 11-20, 21-30, or 31 to de-

livery if these gestational time windows were entirely contained within this period and had an average exposure of < 900kcal/day

during an entire gestation period of 10 weeks. As the famine lasted 6-months some participants were exposed to famine during

two adjacent 10-week periods. Pregnancies with LMP between 26November 1944 and 4March 1945were thus considered exposed

in weeks 1-10; between 18 September 1944 and 24 December 1944 in weeks 11-20; between 10 July 1944 and 15 October 1944 in

weeks 21-30; and between 2May 1944 and 24 August 1944 in weeks 31 to delivery. We define individuals exposed to one or at most

two of these definitions exposed to ‘any’ gestational exposure. In addition, individuals with a LMP between 1 February and 12 May

1945 were exposed to an average of < 900kcal/day for an entire 10 weeks before conception (and up to 8 weeks post-conception)

and are denoted as the �10 – 0 weeks group (e.g., ‘‘preconception’’).
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METHOD DETAILS

Mathematical model
We modeled CpGs (a vector, M), which can be in a methylated or un-methylated state. Generally, TFs and proteins that methylate

CpGs compete for binding to the DNA (Domcke et al., 2015) (see Figure S1 for a schematic overview). Demethylation of target sites

leads to an increase in TF binding (Maurano et al., 2015), while the binding of TFs results in resistance to de novo DNAm by DNMTs

(Brandeis et al., 1994; Maurano et al., 2015). To encapsulate these dynamic behaviors we follow the logic of the modeling approach

byChen et al. (Chen et al., 2013). The probability of binding of TF andDNAm is negatively related to the presence of the other. A higher

activity of TFs will therefore reduce the probability that DNA will become methylated, while more methylation in a TF binding site

(TFBS) decreases the probability of TF binding. DNAm therefore causes a lower gene expression for the target gene. For each

TFBS we modeled 10 CpGs and each TFBS was replicated in 50 cells (the approximate maximum number of cells in a human

pre-implantation blastocyst (Herbert et al., 1995)). Molecular stochasticity gives rise to variation in DNAmbetween cells and between

individuals. We model no differences in DNA sequence between embryos or TFBS within a cell of one embryo. We did therefore not

explicitly model CpG islands, which are hypo or hyper-methylated and generally lack DNAm variation.

The dynamics of gene expression and DNAm depend on the concentration of transcription factors, which reduces the ability of

DNAm transferases (DNMT) to methylate CpGs (i.e., increased availability of TFs reduces methylation on average). We modeled

gene expression (G) as,

G=
½TF�p

½TF�p + ðHuÞp; (1)

where [TF] is the concentration of active TF, the parameter H is the half-saturation value, p determines the rate at which gene

expression increases with [TF], and the parameterumodulates this relationship and is itself a function of methylation state. Following

Chen et al. (Chen et al., 2013) for a given locus i in cell j, uij is

uij =
Yl

k = 1

qMijk ; (2)

where l is the number of modifiable loci (CpGs) in the TFBS, and q is the effect of methylation of a single locus onuij. This is 1 if methyl-

ation has no effect or > 1 for a negative effect of methylation on transcription. ParameterMijk thus describes themethylation status for

each TFBS at the kth locus, in the jth cell for the ith individual. In all simulations that follow we set q = 1.2.

The dynamics of re-methylation over time is defined by the probability of an un-methylated site becoming methylated and vice

versa. The probability of methylation of an un-methylated site is inversely related to the binding of a TF, i.e.,

Pr Mijk;t = 0; Mijk;t + 1 = 1
� �

= 1�G; (3)

whereMijk,t andMijk,t+1 are the states of methylation of the kth locus (individual i and cell j) in a TFBS at times t and t+1 respectively,

andG is the gene expression (Equation [1]). Therefore, the probability of a locus to remain un-methylated is equal to the concentration

of a TF. We assume that the latter is independent of transcription, i.e.,

Pr
�
Mijk;t = 1;Mijk;t +1 = 1

�
=m; (4)

where m is a constant. The probability that a CpG site loses its methylation is therefore (1-m).

We initiate every simulation with a [TF] and all loci begin as un-methylated, i.e., all values ofM are set to zero. We simulated ‘genes’

with different levels of expression by stepwise increasing [TF] (details in Table S3). Gene expression is calculated per cell and, within

an embryo, [TF] is equal for all cells. Because methylation status as determined by Equation [2] is zero for all potential methylation

sites, the [TF] determines the probability of CpG dinucleotides being methylated, following Equation [3]. Then for every given site we

compare a randomly drawn number from a uniform distribution with the outcome of Equation [3]. A CpG dinucleotide is methylated

when this random number is lower than the probability calculated under Equation [3]. In the next time step, some sites will be

methylated, while others remain un-methylated. Again by Equation [2] we determine the methylation status of every site and

determine the probability of methylation for sites that are not methylated. However, for sites that are methylated we determine the

probability that this methylation is maintained, according to Equation [4]. Therefore, for every time step we iterate over all individuals,

cells and TFBS and CpGs within TFBS and determine states and state changes. For every time step we can calculate the gene

expression of an individual by taking the mean over all cells. This process is repeated for every CpG site. Note that for a specific

gene we therefore generate one gene expression level, while multiple mean levels of methylation exist.

Simulations
For the epigenetic selection hypothesis, the likelihood of implantation of an embryo depends on its gene expression level, which itself

is not caused by maternal adversity but varies as a result of the stochastic nature of TF and DNAm binding (as outlined above). The

resulting gene expression levels, as well as the values of methylation frequencies (mean methylation over all cells) are saved before

(as control) and after selection (as cases). The intensity of selection was varied through the proportion of embryos that would
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successfully implant. Because the number of individuals after selection is lower, and this could potentially influence the variation, we

subsample the controls to the same N as the cases. To induce variation in the mean methylation between different genes we altered

the [TF]. Thus, the effects of selection are compared between controls and selected embryos for a distribution of gene expression

varying on a continuous scale between 0 and 1 in mean methylation frequency (see Figure 2).

For the adaptive plasticity hypothesis, cases (those under adversity) had a simulated concerted change in [TF] for a gene

responding to maternal adversity (as a simulation of adaptive plasticity). On the contrary, to simulate control individuals, [TF] did

not change (in effect creating a mean difference in gene expression between cases and controls). We assumed similar [TF] for all

cells within individual embryo’s and furthermore assumed no differences in [TF] between individuals at the start of the simulation.

As above, the mean and standard deviation in methylation frequencies were computed for individuals CpG dinucleotides and

mean and standard deviation were compared between controls and cases (see Figure 2). All values of constants used can be found

in Table S3. Means and standard deviations were calculated in the in the R programming environment (R Development Core Team,

2009), while all simulations were performed in C++.

Robustness to parameter values and mechanistic assumptions
A robustness analysis was performed by altering values of the parameters used in each simulation (Table S3), as well as running

simulations with alternative mechanistic assumptions. Throughout the robustness analyses, we calculated the ratio of standard

deviation of methylation at amean of 0.5methylation frequency between selected and control samples. Selection intensity was taken

to be 50% throughout the analysis, which corresponds to that of the main paper. For every parameter combination we estimated this

ratio in 50 replicate populations and calculated the mean, standard deviation, minimum, and maximum of these ratio values.

Half saturation and methylation maintenance rate
The half saturation parameter (H) determines the concentration of TF and methylation status of the TF binding site (TFBS) at which

gene expression is initiated (i.e., binding of the TF). A higher H results in higher gene expression for a certain methylation level and

[TF]. Themethylation maintenance parameterm is the probability that a site that is methylation will remain methylated from the first to

a second-time point. Together, these parameters can influence the relationship between [TF], methylation, and gene expression and

therefore potentially the strength of the effect of epigenetic selection on the variance in DNAm.

In the main paper, a decrease in variance is described for selected embryos compared to controls. This mean relative decrease in

variance was evident for different levels of H andm (Figure S2). However, with high levels of H (H = 20) and high levels of methylation

maintenance (m > 0.96), the distribution of the mean ± SD of the estimated ratios overlapped with 1, indicating no reduction in

variance. Furthermore, in some individual simulations the ratio was higher than 1, which implies that the pattern will not always be

detected even with reasonably strong selection, or only be evident for a subset of the genes that influence embryo survival.

Half saturation and recruitment of DNMTs by TFs
In the main paper, we report the results from simulations in which the binding of TFs restricted access for DNMTs, and therefore

de novomethylation. However, within the genome, there are loci for which gene expression actually recruits DNMTs. Therefore, sim-

ulations were performed to study the effect of a positive relationship between gene expression and DNAm (Figure S3, upper row).

Because the half saturation parameter, H, might interact with this effect, we ran simulations for a range of values of H. Under all sce-

narios, the mean ratio of variance between cases and controls was lower than unity, indicating a variance reduction similar to that

described for the main model set-up. As expected, with low values of H (i.e., where methylation has little effect on gene expression),

the effect of epigenetic selection is smaller aswell. However, the fraction of TFBSs that positively or negatively affectmethylation rate,

by recruitment or competition with DMNTs, had no considerable effect on the reduction in DNAm variance upon epigenetic selection.

Number of loci per TFBS, methylation effect and gradient [TF]
While in the main paper 10 CpG sites per TFBS were modeled, the genome varies in the number of epigenetic loci that can affect the

methylation dynamics. Furthermore, not all cells in an embryo will have the same [TF]. The interactive effect of these parameters was

also studied (Figure S4).

Allowing for a gradient did not affect the ratio of variance between cases and controls in any of the settings for number of loci and

effect of methylation per CpG site. However, if methylation has a relatively small effect on gene expression, the reduction in variance

is larger when the number of loci is small. With an increasing effect of methylation on gene expression, the effect of selection on

variance reduction increased for those TFBSs that have a larger number of CpG sites, while it remained relatively unaltered for those

that have a small number of CpG sites. It is therefore expected that the number of CpG sites in a TFBS can affect the magnitude of

variance reduction under epigenetic selection.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNAm data
DNAm was measured using the Illumina Infinium Human Methylation 450K BeadChip (450k array) and described in detail elsewhere

(Tobi et al., 2015). Briefly, samples were randomly distributed per 96-well plate and 450K array. Sample dependent and sample
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independent quality metrics were assessed (van Iterson et al., 2014) and bisulfite conversion efficiency was assessed using

dedicated probes and sequencing the IGF2 DMR0. Sample swaps were excluded by re-measuring genotypes measured on the

450K array and gender assessment using X chromosome CpG dinucleotides. We used noob and Functional Normalization from

theminfi package to normalize data. Individual measurements with a detection p value > 0.01 or zero intensity value in the used color-

channel were set as missing. The measurement success rate per sample was > 99%. Next, we removed a-specific/polymorphic,

non-autosomal, < 95% success rate, and completely methylated or unmethylated (in bisulfite sequencing datasets) probes.

Statistics
We previously used generalized estimation equations (GEE) with a Gaussian link function to evaluate the association between DNAm

percentage (the 450k array b-value x 100) and famine exposure (Tobi et al., 2015). In short, per 10-week exposure period and for ‘any’

gestational exposure we compared individuals that meet an exposure definition to all 463 prenatally unexposed time- and family-

controls, controlling for correlation within sib-ships and adjusting for age, gender, row on the 450k array and bisulfite conversion

plate, scan batch, and cellular heterogeneity. We took CpG dinucleotides further for an assessment of the variance in DNAm

when the analysis for a difference in DNAm between famine exposed and controls showed a p value of < 0.001. As control set we

took 1000 CpG dinucleotides not associated with famine exposure (p > 0.2) drawn by using de D-optimum criterion, which ensures

that the 1000 reflect the distribution of both the mean and variance of the methylation of the famine associated CpG dinucleotides.

For each single exposure period we calculated the difference in variance with andwithout correcting the Beta values for the above-

mentioned covariates using a simple linear regression. We calculated that standard deviation (SD) (as measure of the variation) of

DNAm (%) per CpG for the exposed and controls separately and finally calculated the mean difference between the famine exposed

and (sibling) controls over all selected CpGs. The significance of this difference was established by 100,000 permutations as the

correlation betweenCpGs andwithin sibling pairs and the parabolic relation between SD andmeanmethylation violates assumptions

required for (non)-parametric tests. We performed restricted permutations using the R package permute (version 0.9-0) as to assess

how remarkable our observation is given our same-sex sibling design. We randomly assigned the 0-1 or 0-0 status for famine

exposure status between sibling pairs (we do not have 1-1 pairs) and then randomly flipped exposure status within a pair. In conjunc-

ture, we randomly assigned famine exposure status to individuals without a sibling in the study. Each permutation had exactly the

same number of exposed individuals in the sibling pairs and unrelated individuals as in the actual cohort.

DATA AND SOFTWARE AVAILABILITY

Empirical DNAm data generated or analyzed during this study have been published (Tobi et al., 2015), these data are available on

reasonable request. Simulation program (C++) and custom R script to analyze these data are deposited at GitHub at https://

github.com/ecoevomicsjoost/embryo_selection_model.
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