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Abstract

Adaptive plasticity allows organisms to cope with environmental change, thereby increasing

the population’s long-term fitness. However, individual selection can only compare the fit-

ness of individuals within each generation: if the environment changes more slowly than the

generation time (i.e., a coarse-grained environment) a population will not experience selec-

tion for plasticity even if it is adaptive in the long-term. How does adaptive plasticity then

evolve? One explanation is that, if competing alleles conferring different degrees of plasticity

persist across multiple environments, natural selection between genetic lineages could

select for adaptive plasticity (lineage selection). We show that adaptive plasticity can evolve

even in the absence of such lineage selection. Instead, we propose that adaptive plasticity

in coarse-grained environments evolves as a by-product of inefficient short-term natural

selection: populations that rapidly evolve their phenotypes in response to selective pres-

sures follow short-term optima, with the result that they have reduced long-term fitness

across environments. Conversely, populations that accumulate limited genetic change

within each environment evolve long-term adaptive plasticity even when plasticity incurs

short-term costs. These results remain qualitatively similar regardless of whether we

decrease the efficiency of natural selection by increasing the rate of environmental change

or decreasing mutation rate, demonstrating that both factors act via the same mechanism.

We demonstrate how this mechanism can be understood through the concept of learning

rate. Our work shows how plastic responses that are costly in the short term, yet adaptive in

the long term, can evolve as a by-product of inefficient short-term selection, without selec-

tion for plasticity at either the individual or lineage level.

Author summary

Organisms respond to different environments by changing how they act, look or function.

When these responses improve the chances of survival, we call them adaptive plasticity.

But observing adaptive plasticity does not prove that the response evolved because it

improved survival. Being plastic is only selected for if individuals experience environmen-

tal variation, so that in slow changing environments plasticity may be selected against
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even if it is adaptive in the long term. Can adaptive plastic responses still evolve under

these conditions? Yes. We use learning theory to describe how genetic changes accumu-

late when individual lifespan is shorter than the time between environmental changes,

and show that adaptively plastic responses can evolve even when they are selected against.

This is because adaptive plastic responses can evolve as the by-product of selection for dif-

ferent functions in different environments, as long as organisms retain some plasticity

until the next environmental change. Our work demonstrates that evolution can reach

general solutions even when each individual is only presented with a simple fraction of a

more complex problem. This intuition could explain why plastic responses to past envi-

ronments can be adaptive even to environments the entire lineage has never seen before.

Introduction

Organisms that live in variable environments are often subject to opposing selective pressures,

either temporal or spatial, such that intermediate generalist phenotypes have decreased fitness

across all environments. Rather than evolving a generalist phenotype, populations can keep

adapting to each environmental condition as they encounter them, a process known as adap-

tive tracking [1, 2]. Populations that evolve via adaptive tracking need time to adapt to each

new environment. As a result of this adaptation, the population experiences reduced fitness

after each environmental change. Both populations that evolve a generalist phenotype and

those that evolve by adaptive tracking thus have reduced fitness in the long term. By contrast,

adaptive phenotypic plasticity allows individuals to maintain an adaptive fit between pheno-

type and environment: plastic individuals produce only high fitness phenotypes by responding

appropriately to environmental cues. Populations evolving adaptive plasticity thus avoid both

the fitness loss arising from trade-offs of generalist phenotypes and the fitness loss that track-

ing populations suffer after environmental change. Within this framework, the question of

whether plasticity evolves can be interpreted as the comparison between the average fitness

across all environments for populations which evolve plastic responses, evolve generalist

phenotypes or evolve via tracking [3, 4]. As such, a considerable amount of effort has been

invested in characterizing the conditions that determine the fitness of plastic rather than non-

plastic solutions, and to document if plasticity itself incurs a fitness cost [5–7].

While adaptive plasticity is common in nature and demonstrably superior to non-plastic

solutions for a wide range of conditions, the process by which it evolves remains a matter of

debate. The standard assumption that natural selection favours the best available solution is

problematic, since natural selection only discriminates between phenotypes that are expressed.

Natural selection is thus unable to detect that a plastic organism is adapted to more environ-

ments than a non-plastic one unless individuals encounter multiple environments within their

life spans, a condition known as environmental fine-grain [8]. Even when individuals experi-

ence more than one environment per lifetime, each individual may express only a single phe-

notype if plastic responses are irreversible [9–11], too slow (e.g [12]) or too costly (e.g. [5])

relative to the fitness advantage of producing the right phenotype for the current conditions

[2, 7].

This creates an evolutionary dilemma: adaptive plasticity maximizes fitness in the long-

term, but natural selection favours non-plastic phenotypes in each short-term environment. In

other words, experiencing one environment per lifetime (environmental coarse grain) does

not allow individual selection for plasticity, so that if plastic responses incur any cost compared

to non-plastic phenotypes they will be selected against in the short-term. Since costly plastic
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responses in coarse-grained environments provide fitness benefits only when individuals are

selected over multiple generations, we refer to those responses as long-term adaptive plasticity.

While long-term adaptive plasticity is selected against in the short-term, adaptive responses to

coarse-grained environments commonly evolve, and include environmental determination of

resistance and dispersal phenotypes [13, 14] and seasonal morphs of short-lived species [9, 15].

How can we explain the process by which costly adaptive plasticity evolves in such coarse-

grained environments? While individual-level selection does not favour plasticity in coarse-

grained environments, alleles that determine an organism’s plasticity are transmitted between

generations, and their fixation or loss will depend on their fitness across the set of environ-

ments they encounter [16, 17]. Natural selection may therefore discriminate between plastic

and non-plastic alleles if both are maintained long enough to be selected across multiple envi-

ronments, even if each individual organism experiences only a single environment. Plastic

adaptations to coarse-grained environments could therefore evolve if multiple alleles (genetic

lineages) persist long enough to be subject to natural selection across multiple generations and

environments, a process known as lineage selection [4, 18, 19]. More precisely, we define line-

age selection as a specific type of natural selection acting on multiple alleles which persist for

multiple generations (see [20]). This is in contrast with Strong Selection and Weak Mutation

regimes (SSWM) in which each new allele is either lost or fixed before more genetic variation

can arise. Under SSWM genetic variation is provided only by new mutations (rather than

standing genetic variation), so that repeatedly comparing multiple alleles is impossible.

The availability and persistence of standing genetic variation on plastic responses is thus a

key requirement for the evolution of adaptive plasticity in coarse grained environments (e.g.

[4, 17, 19]). This implies that plasticity will not evolve in populations that are small or under

strong selection, since these conditions remove the genetic variation lineage selection requires

to operate (e.g. [21]). Because small population size and strong selection are representative for

populations experiencing rapid environmental change, evolution of plasticity appears unlikely

to play a role in evolutionary rescue or successful colonization [22, 23]. The evolution of costly

adaptive plasticity will only be possible if genetic diversity is available, but high genetic diver-

sity will also cause rapid removal of costly plastic variants in favour of non-plastic short-term

solutions, so that costly adaptive plasticity should only evolve as an intermediate step towards

non-plastic solutions.

We apply a core concept of learning theory—learning rate—to propose an alternative

mechanism for the evolution and maintenance of costly adaptive plasticity without lineage

selection. In machine learning, learning rate measures the amount of change a system accumu-

lates with each example shown. Existing literature demonstrates that the process of learning by

trial and error is mechanistically analogous to evolution by natural selection [24]. In the con-

text of adaptation, genetic learning rate measures the ability of a population to change in

response to new environments by accumulating adaptive mutations. More specifically, we can

define genetic learning rates as the amount of genetic change fixed by a population in each

new environment. Genetic learning rate (henceforth just learning rate) depends both on the

ability to generate variation (mutation rate and effect size, population size) and to fix particular

variants (strength of selection). Since both the processes that produce and fix variants require

time to operate, increasing the time spent in each environment will allow populations to accu-

mulate more adaptive change. Thus, the more generations a population spends in a single

environment the higher its learning rate will be.

As we show in our simulations, populations initially produce phenotypes matching their

current environment by accumulating both mutations that change the mean phenotypic value

and mutations that change plasticity. Populations with high learning rates find optimal pheno-

types for the current environment and remove costly plasticity before each new environmental
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shift: When populations can quickly reach current optima in each current environment, plastic

adaptations to past environments cannot evolve. Populations with low learning rates cannot

reach current optima before the next environmental shift, and pass on to the next environment

all genetic changes which brought them closer to the previous phenotypic optimum, whether

or not these genetic changes cause phenotypes to be plastic. Selection in the new environment

thus starts from a population which already accumulated adaptively plastic changes, so that the

overall plastic responses can be further refined over time.

In evolutionary terms, low learning rates maintain directional selection for plastic develop-

ment, with the end result of directing evolution towards the production of long-term adaptive

plastic responses. Unlike the lineage selection explanation, the learning theory explanation

does not require the prolonged co-existence of alleles with different effects on plasticity: adap-

tive plastic responses will evolve even in populations which exhibit only a single reaction norm

at any given time. Rather, learning theory only requires that the population accumulates lim-

ited genetic change per environment, so that the average genotype retains some of the adaptive

plasticity accumulated in past environments. Learning theory thus predicts that, as long as nat-

ural selection is inefficient in bringing about genetic change, long-term adaptive plasticity

should evolve even in the extreme case when only one lineage is present in the population at

any given time (strong selection weak mutation) and plasticity is selected against in each cur-

rent environment.

In this paper, we provide a first exploration of the evolution of adaptive plasticity from a

learning theory perspective. To do so, we employ a classic linear reaction norm model [25, 26]

to simulate the evolution of costly adaptive plasticity in temporally coarse-grained scenarios.

This allows us to contrast the predictions made by learning theory and lineage selection

regarding when and how plasticity should evolve. First, we demonstrate that plasticity can

evolve in coarse-grained environments, showing that individual-level selection for plasticity is

not necessary to evolve adaptive plasticity. Second, we demonstrate that adaptive plasticity

evolves in coarse-grained environments even in the absence of multiple lineages, counter to

the predictions of lineage selection. Third, we show that limiting mutation rates biases popula-

tions towards adaptive plasticity rather than adaptive tracking, in accordance with the predic-

tions of learning theory. These results reveal that long-term adaptations can evolve even when

each current environment selects against them, as long as natural selection is inefficient.

Results and discussion

Simulation set-up

We simulate a population that experiences temporal environmental heterogeneity. Each indi-

vidual receives information from the environment and develops into an adult phenotype,

upon which selection can act. We follow standard approaches for the evolution of plasticity

[18, 27, 28] and model development as a linear reaction norm, whose intercept a represents

the mean genetic trait value across environments (also known as G, e.g. [17]) and slope b the

degree of plasticity, or genotype by environment interaction (GxE, see Reaction norm model).

The developed phenotype P is thus

P ¼ aþ b � C

where C is the univariate environmental cue.

We model a heterogeneous varying environment with 10 environmental states, so that each

environmental state, Ei produces a single, unique value of the cue CEi and requires a single spe-

cific univariate phenotype PEi . We model the matching between cues and trait optima as a lin-

ear function (see Environmental variability). This implies that a linear reaction norm with
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appropriate slope and intercept can achieve perfect fit for all environments in our set. We

assume non-overlapping generations of individuals with a constant fixed lifespan. This

assumption allows us to control the granularity of environmental variability with a single

parameter, K. If K� 1 the environment changes every K generations, indicating coarse-

grained (K = 1) or slow coarse-grained (K> 1) environmental variability. If instead K< 1 the

population encounters on average 1/K environments per generation, indicating fine-grained

environmental variability.

We evaluate the fitness of each individual based on the distance of its developed phenotype

from the optimal target phenotype in the current environment. In case the individuals experi-

ence more than one environment, we calculate their fitness as the mean match between the

developed phenotypes and the selective environments experienced. We further impose a fit-

ness penalty proportional to the individual’s responsiveness to its environment (absolute reac-

tion norm slope b, see above). This cost of plasticity ensures that plastic individuals will have

lower fitness than non-plastic ones regardless of their phenotypes, and effectively represents a

trade-off incurred by plastic organisms (see Evaluation of fitness). While few empirical studies

have found evidence for costs of plasticity (see Conclusion), including a cost means that plas-

ticity is selected against, and thus serves as a form of conservative bias against plasticity. Since

we measure fitness as relative to a pre-specified optimal phenotype, we express it as phenotypic

mismatch or lack-of-fit: a measure which decreases quadratically from zero as the phenotype

diverges from the optimum (see section Evaluation of reaction norms).

Organisms reproduce asexually with a probability proportional to their relative fitness

within the population (see Evolutionary process). Every individual inherits the same slope and

intercept as their parents, which are then mutated by adding a random value selected from a

normal distribution with mean 0 and standard deviation equal to the mutation size (0.01

unless otherwise specified). Thus, both intercept and slope mutate every generation (effective

mutation rate = 1), but most mutations have small effects. Unless otherwise stated, we set a

population of 1000 individuals and choose strength of selection ω of 0.2. In addition, we set

the associated cost of plasticity, λ, to be 0.1.

While we assume that the cost of plasticity is a property of the genotype, the fitness losses

caused by adaptive tracking depend on both the frequency of environmental changes and the

amount of time required to reach new short-term optima after each environmental change.

Thus, if environmental changes are rare or if the population can quickly reach new optima, the

cost of adaptive tracking can be lower than the cost of adaptive plasticity. To verify whether or

not adaptive plasticity is the optimal long-term strategy, we analytically tested all parameter

combinations used in our simulations (see S1 Appendix). Our analysis confirmed that the fit-

ness cost of adaptive tracking is greater than the cost of adaptive plasticity for all parameter

combinations used in this paper. Since adaptive plasticity is the optimal strategy across all our

simulations, we can rule out that the eventual evolution of adaptive tracking is because of its

greater long-term fitness. In other words, lineage selection should select for adaptive plasticity

across all our simulations, since adaptive plasticity incurs lower fitness costs compared to

adaptive tracking.

Individual-level selection is not necessary for the evolution of adaptive

plasticity

In this section, we compare the evolution of plasticity in fine-grained environments, which

allow individual-level selection for plasticity, with coarse-grained ones, which do not. We ini-

tially assess the evolution of phenotypic plasticity when individuals encounter multiple envi-

ronmental states per life-time (i.e., a fine-grained environment; here 10, K = 0.1). We further
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assume that the phenotype can change during individuals’ lifespan (reversible plasticity), and

this change is both immediate and incurs in no fitness costs.

In fine grained environments, the evolved reaction norms converge the optimal intercept

and slope in less than 3000 generations (Fig 1A, inset). This means that individuals produce

trait values that perfectly match the optimal trait value of all environmental states they encoun-

tered during their lifetime, as we can see from the fact that the distance between realised and

optimal phenotypes decreases to zero for all environments in our set (Fig 1A). We find mini-

mal residual genetic variation on both the slope and intercept terms of the reaction norm

(Fig 1B). This is reflected in the limited differences between the reaction norms of top and

mean performing individuals (Fig 1A). Note that the reaction of the average (yellow dots) and

best individual (green dots) are perfectly aligned and match the optimal reaction norm (red

crosses).

We contrast the previous fine-grained scenario with a slow coarse-grained environment in

which conditions change every 4000 generations on average (K = 4000). As such, each individ-

ual experiences only one environment, and environmental change between generations is also

slow. In this coarse-grained environment, the population fails to evolve adaptive long-term

plasticity (Fig 2). After each environmental change we observe a drop in fitness to the current

environment, followed by a distinctive two-step pattern in their adaptive paths. During the

first phase, organisms evolve towards the new target phenotype, as indicated by the steep

increase in current fitness (Fig 2A, inset, green line). Crucially, the increase in current fitness

during this phase is accompanied by a corresponding increase in fitness to past environments

(Fig 2A, blue line), which indicates evolution of adaptive plasticity. During this phase, muta-

tions which increase plasticity can be selected for if they cause the production of fitter pheno-

types, offsetting the cost of plasticity (see S1 Appendix). After organisms are able to produce

phenotypes which match the current phenotypic optima, we observe a decrease in their fitness

to past environments (Fig 2A, blue curve). This indicates that the same organisms would no

longer be able to produce adaptive phenotypes when exposed to past environments, consistent

Fig 1. Evolution of reaction norms in fine-grained environments. (A) Average plasticity (orange line) and lack of fit (blue line) of

the population over time, relative to the optimal adaptive reaction norm, see Evaluation of reaction norms. The dashed orange line

indicates optimal long-term adaptive plasticity (B) Evolved reaction norms (grey lines) compared to optimal reaction norm (dashed

line) at the end of the evolutionary period. Crosses indicate optima corresponding to environmental values used in the simulation.

Dots indicate the phenotypes expressed for environmental values used in the simulation. The population evolves optimal adaptive

plasticity.

https://doi.org/10.1371/journal.pcbi.1006260.g001

How adaptive plasticity evolves when selected against

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006260 March 8, 2019 6 / 20

https://doi.org/10.1371/journal.pcbi.1006260.g001
https://doi.org/10.1371/journal.pcbi.1006260


with a decrease in costly adaptive plasticity. During this phase plasticity is directly selected

against in order to decrease its fitness costs.

In other words, the population reaches the optimal phenotype using a combination of slope

and intercept (phenotypic adaptation) and then minimizes the slope (plasticity minimiza-

tion). From a fitness perspective, selection during the phenotypic adaptation phase increases

fitness by producing the current target phenotype, whereas selection in the plasticity minimi-

zation phase increases fitness by maintaining the current target phenotype while removing

costly plasticity. It is worth noting that these two phases match those described in the analo-

gous model presented in [17]. After the plasticity minimization phase we still observe some

genetic variation in reaction norm slope (grey lines in Fig 2B), but the average slope is 0: adap-

tive plastic responses are approximately as likely as maladaptive ones. Populations evolving

under slow, coarse-grained environments thus fail to evolve adaptive plasticity and instead re-

adapt upon each environmental change, consistently with adaptive tracking.

Next, we test whether or not direct selection for plasticity is required for its evolution. To

do so, we set the environment to change every generation (K = 1), which is the fastest rate we

can set under a coarse-grain scenario: every individual experiences only a single environment,

but every generation experiences a different one. Since each individual only experiences one

environment, we can rule out direct selection for adaptive plasticity. Furthermore, costly plas-

ticity is selected against within each short-term environment.

In this fast coarse-grained environment, populations evolved adaptive plasticity (Fig 3). We

observe that the deviation from the optimal phenotype for both current and past environments

decreased to zero, indicating optimal fit to all environments within the range experienced

(Fig 3A). In addition, we observe less residual genetic variation compared to the case of slow

coarse-grained environmental variability (Fig 3B). This is also indicated by the narrow gap

between the top and the mean performance curve in Fig 3A.

Looking at the evolutionary trajectory of the population, we can see that while fitness to

the current environment (green line) fluctuates, fitness to the whole environment set (past

environment; blue line) gradually increases over time. Moreover, we see no gap between

Fig 2. Evolution of reaction norms in slow coarse-grained environments. (A) Lack of fit (see Evaluation of reaction norms) in

current (green lines) and past (blue lines) environments. Orange line indicates average plasticity in the population, dashed orange

line optimal long-term plasticity. (B) Evolved reaction norms (grey lines) compared to optimal reaction norm (dashed line) at the

end of the evolutionary period. Crosses indicate optima corresponding to environmental values used in the simulation. Dots indicate

the phenotypes expressed for those values. The population re-adapts to the current environment after each environmental change

(adaptive tracking).

https://doi.org/10.1371/journal.pcbi.1006260.g002

How adaptive plasticity evolves when selected against

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006260 March 8, 2019 7 / 20

https://doi.org/10.1371/journal.pcbi.1006260.g002
https://doi.org/10.1371/journal.pcbi.1006260


performance in current and past environments. This indicates that increasing fitness to the

current environments does not cause loss of fitness in past environments. Instead, the popula-

tion accumulates responses that are adaptive for all previously experienced environments.

These results demonstrate that populations evolving in fast-changing environments produce

adaptive plastic responses even when plasticity is costly and environmental change only occurs

between generations.

At this stage, we have merely confirmed well-known results (e.g., [17]). We now consider

two explanations for the evolution of adaptive plasticity in coarse-grained environments. The

standard interpretation is based on a lineage selection model, where faster environmental

change will increase the odds that each allele is tested in more than one environment. Adaptive

plasticity can evolve since plastic alleles have greater mean fitness than non-plastic alleles when

compared across multiple environments, even though the latter have higher fitness within

each current environment. The learning theory interpretation instead is based on the predic-

tion that decreasing the number of generations in each environment will decrease the genetic

change accumulated within each environment (i.e., the learning rate), ensuring that the

changes accumulated during the phenotypic adaptation phase are not lost because of optimiza-

tion to current environments. While both mechanisms cause a shift from short to long-term

adaptation, each has distinct requirements: lineage selection relies on the transmission of

genetic variants in order to compare the fitness of multiple alleles; learning theory requires

that populations accumulate little genetic change in each environment, so that the system

retains some information from the past. In contrast with lineage selection, learning theory

does not require that past information is stored in separate lineages. Rather, past information

can also be stored in developmental parameters, such as the slope of plasticity. As long as plas-

ticity does not revert to zero, the system retains some information about past adaptive plastic-

ity and can be progressively improved after each environmental change, regardless of the

presence of trans-generational genetic variation. In the next two sections, we make use of this

key difference to determine which of the two processes can better explain the evolution of plas-

ticity in coarse environments.

Fig 3. Evolution of reaction norms in fast coarse-grained environments. (A) Lack of fit (see Evaluation of reaction norms) in the

current (green line) and past (blue line) environments. Orange line indicates the average slope of plasticity in the population, dashed

orange line indicates optimal long-term adaptive plasticity. (B) Evolved reaction norms (grey lines) compared to optimal reaction

norm (dashed line) at the end of the evolutionary period. Crosses indicate optima corresponding to environmental values used in the

simulation. Dots indicate the phenotypes expressed for those values. The population evolves optimal adaptive plasticity.

https://doi.org/10.1371/journal.pcbi.1006260.g003
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Lineage selection is not necessary for the evolution of adaptive plasticity

To test the need for lineage selection, we repeat the scenarios for the evolution of plasticity in

fine-grained (K = 0.1), coarse-grained (K = 1) and slow coarse-grained (K = 40000) environ-

ments enforcing strong selection and weak mutation (SSWM). Under SSWM, the speed at

which mutations arise is much slower compared to the speed at which they are fixed or lost,

driving standing genetic variation to zero. Comparing the fitness of alleles across different

environments is therefore impossible. We model SSWM using a hill-climber algorithm: each

evolutionary step produces only one mutation. If the new mutation is fitter than the previous

one it is fixed, otherwise it is lost (see Hill-climbing model). SSWM leads to a constant effective

population size of 1 and makes lineage selection impossible. Therefore, if the lineage selection

hypothesis is correct, we expect that adaptive plasticity will fail to evolve in all coarse-grained

environments. To rule out that the potential failure to evolve plasticity is due to insufficient

time, we verify the results under an extended simulation time of 2 � 107 generations.

Contrary to the predictions of the lineage selection explanation, we find that the results

from the above simulations are qualitatively and quantitatively similar to those obtained using

a population size of 1000, despite the SSWM selection regime (Fig 4). That is, populations fail

to evolve plasticity when environments change every 40000 generations (Fig 4A), and succeed

in doing so when provided with either fine environmental grain (Fig 4B) or a rapid coarse-

grained (i.e., trans-generational) change (Fig 4C).

The evolutionary trajectory of populations under SSWM also remains remarkably similar

to that of populations with standing genetic variation (compare Fig 4 with Figs 1, 2 and 3).

Populations evolving in fine-grained and fast coarse-grained environments both show a grad-

ual increase in fitness to past environments, which remains comparable to fitness in the cur-

rent environment. This indicates that they adapt to all previously seen environments rather

than just the current one. Populations in slow coarse-grained environments instead perform

consistently better in current environments compared to past ones, showing the repeated evo-

lution of phenotypes adapted to current conditions, or adaptive tracking. Their evolutionary

trajectory also displays the same two-step cycle after each environmental change: fitness

increase in both current and past environments (phenotypic adaptation) followed by fitness

decrease in past environments only (plasticity minimization) (Fig 4A).

Taken together, these findings demonstrate that both the final results and the evolutionary

trajectories of our simulations are largely unaffected by the lack of standing genetic variation.

Since standing genetic variation is required for adaptation via lineage selection, these results

falsify the hypothesis that plasticity needs to evolve by averaging the fitness benefits of alterna-

tive variants across multiple environments. In the next section, we make further predictions

based on the learning theory explanation and try to falsify them.

Low mutation rates are analogous to fast environmental change

Using a learning theory framework, we can define the conditions that allow evolution in

coarse-grained environments to approximate evolution in fine-grained ones. The two scenar-

ios will produce the same outcome only as long as the average of evolutionary changes in

coarse-grained environments is the same as the evolutionary changes that would happen in

fine grained environments.

In our specific example, individuals selected in slow coarse-grained environments evolve

non-plastic solutions after each environmental change. On average, evolutionary changes in

slow coarse-grained environments decrease plasticity until it reaches zero. This is in contrast

with fine-grained environments, which evolve plasticity towards the optimal adaptive slope.

Since the average change in plasticity in coarse-grained environments is different from the
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Fig 4. Evolution of reaction norms under strong selection weak mutation. Panels to the left show population performance (see

section Evaluation of reaction norms) over time in current (green line) and past (blue line) environments. Panels to the right show

the evolved reaction norm (solid line) compared to optimal reaction norm (dashed line) at the end of the evolutionary period.

Crosses indicate optima corresponding to environmental values used in the simulation. Dots indicate the phenotypes expressed for

those values. (A) Slow coarse-grained environments (K = 40000) (B) Fine-grained environments (K = 0.1) (C) Fast coarse-grained

environments (K = 1). Performance over time and evolved reaction norms are identical to weak selection scenarios.

https://doi.org/10.1371/journal.pcbi.1006260.g004
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change in plasticity under fine-grained environments, the two scenarios have different out-

comes. Conversely, individuals selected in fast coarse-grained environments retain some plas-

ticity between environments. Furthermore, on average, the change in plasticity induced by

each new environment points towards optimal adaptive plasticity: inherited maladaptive plas-

ticity will be selected against, and inherited adaptive plasticity will be conserved. Therefore, as

long as plasticity does not reach zero before the environment changes, evolution in coarse-

grained environments will follow the same direction as evolution in fine-grained environ-

ments. This is the reason why we expect lower learning rates to cause the evolution of adaptive

plasticity in coarse-grained environments: lower learning rates ensure that the population does

not find short-term, non-plastic optima before the next environmental change, which allows

the averaging of plasticity across environments.

Since we define learning rates in biological systems as the amount of genetic change accu-

mulated by the population in each new environment, they can be affected by several parame-

ters other than rate of environmental change. Population size, mutation size and mutation

frequency will all increase the amount of genetic change produced within each environment

and thus increase the population’s learning rates. Stronger selective pressure will speed up the

fixation of beneficial variants, and therefore also increase learning rates. If the learning rate

explanation for the evolution of adaptive plasticity in coarse-grained environments is correct,

these factors should be interchangeable with the rate of environmental change.

For example, small populations or populations with low mutation frequency should be able

to find long-term plastic solutions even when environmental change is rare. It is important to

point out that decreasing population size or mutation frequency would instead hinder the

action of lineage selection, which benefits from the maintenance of a large pool of genetic vari-

ants to select from.

While a full exploration of all possible parameter space is beyond on the scope of this paper,

we evaluate the learning theory explanation by testing the specific prediction that adaptively

plastic responses can evolve even when environmental changes are slow, provided that muta-

tion sizes are sufficiently small (and hence learning rate is low). This question can be answered

using the same model, and in particular the case of slow coarse-grained environments (envi-

ronments change every 4000 generations) with a population size of 1000 individuals. As

shown above, adaptive plasticity fails to evolve under these conditions. Learning theory

explains this failure with the high learning rates in this population. Rather than decreasing the

learning rate by decreasing the number of generation spent in each environment, we lower the

standard deviation of mutation sizes from 10−2 to 10−4.

As we can see in Fig 5B, the population eventually evolves an optimally adaptive plastic

reaction norm, with negligible amounts of variation around both slope and intercept. Their

evolutionary trajectories (Fig 5A) are also qualitatively similar to those of populations evolving

in fast, coarse-grained environments. In both scenarios, fitness to the current environment

(green) fluctuates around average fitness to past environments (blue), indicating that the

populations are not evolving phenotypes that increase current fitness at the expense of past

adaptation. The steady increase in average fitness to past environments instead indicates the

evolution and retention of more general, plastic solutions.

While the two trajectories are similar in shape, the population experiencing slower environ-

mental changes and smaller mutation rates takes a significantly longer to reach optimal

plasticity. An increase in the number of generations required to find solutions is a known con-

sequence of lower learning rates. Intuitively, we can explain the longer time required to adapt

as a consequence of the slower rate at which variants become available.

While lineage selection is technically viable in this simulation, decreasing mutation sizes

would also decrease the amount of available genetic variation, making it even less effective. A
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potential alternative explanation to our findings is that the reduced amount of genetic change

per generation would enable multiple lineages to persist for longer, thus enabling the action of

lineage selection. To test for this alternative explanation we run a simulation with K = 40000

and σμ = 10−5 using a hill-climber to model SSWM. The results are both qualitatively and

quantitatively similar to those obtained in the previous simulation (see Fig 6). Since our results

are unaffected by the absence of lineages, we can rule out that the observed evolution of plastic-

ity with smaller mutation rates is due to the longer persistence of multiple lineages. Taken

together, our simulations provide falsifying evidence for a number of frequent assumptions on

Fig 5. Evolution of reaction norms in slow coarse-grained environments with low mutation rates. (A) Lack of fit (see Evaluation

of reaction norms) in current (green lines) and past (blue lines) environments. Orange lines indicate realized (solid lines) and

optimal (dashed lines) adaptive plasticity. (B) Evolved reaction norms (grey lines) compared to optimal reaction norm (dashed line)

at the end of the evolutionary period. Crosses indicate optima corresponding to environmental values used in the simulation. Dots

indicate the phenotypes expressed for those values. The population slowly evolves optimal adaptive plasticity.

https://doi.org/10.1371/journal.pcbi.1006260.g005

Fig 6. Evolution of reaction norms in slow coarse-grained environments with low mutation rates under SSWM (A) lack of fit

(see Evaluation of reaction norms) in current (green line) and past (blue line) environments. The solid orange lines indicates

average population plalsticity, the dashed orange line optimal adaptive plasticity (B) Evolved reaction norms (grey lines) compared

to optimal reaction norm (dashed line) at the end of the evolutionary period. Crosses indicate optima corresponding to

environmental values used in the simulation. Dots indicate the phenotypes expressed for those values. The population slowly evolves

optimal adaptive plasticity.

https://doi.org/10.1371/journal.pcbi.1006260.g006
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the requirements for the evolution of costly adaptive plasticity in coarse-grained environ-

ments, which we summarize in Table 1.

Conclusion

The evolution of costly adaptive plasticity has often been framed as a necessity caused by envi-

ronmental change outpacing the ability of natural selection to generate new adaptations [2, 3,

29, 30], but the process by which organisms achieve plasticity in these conditions have seldom

been clarified.

We demonstrate that neither individual nor lineage-level selection for adaptive plasticity

are necessary for the evolution of adaptive plasticity. Rather, the speed of adaptation relative to

environmental change (modelled as learning rates) is by itself a causal factor in the evolution

of plastic responses that are adaptive across a range of coarse-grained environments. High

learning rates allow optimization of phenotypes in each current environment, at the expense

of more general solutions that improve their fitness across all environments experienced. Low

learning rates instead make it impossible for phenotypes to chase short-term optima, yet allow

individuals to reach long-term optimal plasticity despite the presence of short-term trade-offs.

If approached from a purely adaptationist perspective, these results seem counter-intuitive:

the conditions which allow natural selection to work most effectively (high population sizes,

high mutation rates, strong selective pressure and rare changes in the environment) result in

an evolutionary outcome (adaptive tracking) which has lower fitness than adaptive plasticity

across all of our simulations (see S1 Appendix). Conversely, changes in the same parameters

that decrease the ability of natural selection to effectively cause phenotypic change result in an

evolutionary outcome (adaptive plasticity) which maximizes fitness of the population in the

long-term. We explain these counter-intuitive findings by using learning rates, a core concept

of learning theory. Specifically, we demonstrate that low learning rates prevent populations

from reaching short-term optima before a new environmental change occurs. This in turn

allows evolved plastic reaction norms to be transferred across environments, so that they are

effectively selected across multiple environments. The end result is that, as long as learning

rates are sufficiently low, selection in coarse-grain environments converges on the same out-

come as selection in fine-grained ones: adaptive plasticity. In learning theory terms, the cumu-

lative effect of testing models sequentially on each individual example (online learning) will be

the same as testing them on the entire set at once (batch learning) only if learning rates are low

enough to prevent overfitting to the last example seen [31].

While low learning rates are necessary to evolve general solutions in the presence of trade-

offs in performance, none of the factors that affect learning rates is necessary by itself. This is

because learning rate is a composite measure, so any given factor may be offset by the others.

We demonstrate this by showing that low mutation rate is sufficient to evolve costly adaptive

plasticity even in slow, coarse-grained environments. Increasing population size and selection

Table 1. Predictions and falsifying evidence on the evolution of costly adaptive plasticity (CAP).

Prediction Falsifying Evidence

CAP requires fine-grained environments CAP evolves in coarse-grained environments

CAP in coarse-grained environments requires lineage

selection

CAP evolves when only one lineage is allowed

CAP in coarse-grained environments requires fast

environmental changes

CAP can evolve in slow coarse-grained environments

CAP is favoured in large populations with high mutation

size

Increasing mutation and population size causes

adaptive tracking

https://doi.org/10.1371/journal.pcbi.1006260.t001
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strength should instead decrease the odds of evolving costly adaptive plasticity, as both factors

increase learning rates. As a consequence, even populations with no measurable genetic varia-

tion in plasticity could evolve adaptive plastic responses as long as (1) new genetic variation

can be produced over time and (2) short-term optima change before natural selection can

reduce plasticity to zero.

This observation reverses the suggested causal link between plasticity and the rate of

genetic evolution. Current theory proposes that plastic individuals experience weaker selection

because they are able to cope with a wider range of environments [4]. Because of the reduced

selective pressure, the amount of genetic change that accumulates in the population (learning

rate) is also reduced. We instead suggest a low learning rate itself may skew populations

towards evolving more general solutions, including plastic responses that are costly in current

conditions but optimal across the entire set of previously experienced environments. As such,

weak selection could facilitate the evolution of plasticity.

Since low learning rates promote the evolution of adaptive plastic responses by reducing

the relative importance of minimizing plasticity costs, they are irrelevant to the evolution of

inexpensive plastic responses. When there are no costs of plasticity, every combination of

slope and intercept that generates the optimal short-term phenotype is fitness equivalent

within each environment. Because plastic and non-plastic solutions have the same short-term

fitness, adaptive plasticity is selected for when the population moves towards the current phe-

notypic optimum and randomly drift after the optimal phenotype has been reached. The pop-

ulation will thus inevitably find the optimum for all past environments, and learning rates will

only determine the speed at which the population reaches the optimum.

Learning rates are likewise irrelevant for the evolution of costly adaptive plasticity in fine-

grained environments, which are sufficient (but not necessary) for the evolution of adaptive

plasticity across all our simulations (see S1 Fig). Fine-grained environments allow natural

selection to directly compare the fitness of phenotypes across multiple environments at the

individual-level within each generation, so that adaptive plasticity is optimal even in the short-

term. Direct selection for plasticity is unsurprisingly sufficient to ensure the evolution of adap-

tive plasticity. Under those conditions, learning rates can only determine the speed of selective

process rather than its outcome.

Our simulations consider the specific case of maintenance costs for plasticity. That is, we

assume that plasticity directly decreases fitness, regardless of whether it is expressed. This

assumption has a long history in modelling the evolution of plastic responses, but has been

largely unsupported by empirical data which does not find costs of plasticity for the vast major-

ity of traits analysed [32, 33]. However, several alternative scenarios can create mathematically

equivalent trade-offs between selection in current and past environments. A well-studied

example is that of inaccurate cues, either due to imperfect perception or noise in the cues

themselves [3, 22, 34]. Alternatively, the target phenotypes may not perfectly match with the

best possible reaction norm. This scenario can happen for any reaction norm which is selected

on a set of environments larger than its degrees of freedom (3 in the case of linear reaction

norms) [35] or if there are limits to the maximum amount of plastic changes that an organism

can evolve [27, 32, 33, 36]. In all of the above mentioned cases, optimal long-term plasticity

would cause loss of fitness across current environments and consequently be selected against.

Learning rates will thus be relevant for the evolution of plastic responses across all of them.

In our simulations, mutations that lead to adaptive plasticity are selected since they increase

phenotypic fitness within current environments, eventually causing the evolution of adaptive

long-term plasticity. This is in contrast with lineage selection models, in which mutations that

cause adaptive plasticity are selected because of their long-term benefits, but are (at best) selec-

tively neutral in current environments. Since the evolution of plasticity in our model is driven
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by a short-term (rather than lineage) selection process, we predict it to be both faster and more

robust to the presence of trade-offs. Similar dynamics apply to the evolution of modularity as

a by-product of short-term phenotypic selection, and are proven to be scalable to arbitrarily

complex systems [37].

From a learning theory perspective, low learning rates cause the evolution of adaptive plas-

ticity because they constrain populations to evolve new adaptive solutions starting from previ-

ous genetic adaptations of the reaction norm rather than ‘from scratch’. As a result, evolved

reaction norms do more than just ‘remember’ which specific phenotype associated with each

specific environment: they capture the logic that connects all cues to all phenotypes. In learn-

ing theory terms, organisms learn the regularities of the (evolutionary) problem, a process also

known as generalization [31]. Therefore, as long as regularities remain the same, each individ-

ual will be able to produce adaptive phenotypes even in environments it has never experienced

in its evolutionary history (extrapolation), without the need for further adaptation. Conversely,

several studies show that systems that learn a problem’s regularities are also able to quickly

adapt to new problems which share a similar logic [38, 39]. This ability to more rapidly evolve

new adaptive phenotypes in response to new environments can instead considered as an

increase in their evolvability. Our demonstration that organisms can learn regularities between

environments even when each organism only ever experiences a single environment opens up

the possibility that evolved plastic responses may both prepare organisms for future, more

extreme, environments (via extrapolation) and enable them to more rapidly evolve new adap-

tive solutions (via evolvability). This demonstrates that past evolution can shape evolutionary

trajectories by biasing the phenotypic variants that are exposed to selection [24, 40].

In summary, we use a simple reaction norm model to demonstrate that costly adaptive

plasticity can evolve even when natural selection is unable to compare competing alleles over

multiple environments (i.e., lineage selection). A learning theory framework helps us inter-

pret this finding: Populations evolving in coarse-grained environments can evolve adaptive

plasticity if the amount of adaptive change accumulated per environment—the learning rate

—is low. Populations with high learning rates evolve via repeated short-term adaptation

even if this pattern is maladaptive in the long term. Low learning rates facilitate adaptation

to the entire set of environments experienced over adaptation to just the current environ-

ment, favouring adaptive plasticity even in the presence of short-term functional trade-offs.

Thus, long-term adaptive plasticity can evolve even when it is not selected for at either the

individual nor lineage level. Whether a population evolves phenotypes that optimize fitness

in the short or long term instead depends on the amount of adaptive changes it accumulates

within each environment.

Methods

Environmental variability

For plasticity to evolve, the environment needs to fulfill two roles: determining the selective

conditions (selective role) and providing information about those conditions (constructive

role) [41]. We simulate the selective role by assigning each environmental state (current or

short-term environment) a target single trait optimum ϕ, represented by a single real number.

We simulate the constructive role by assigning each target optima an environmental cue repre-

sented by a real number C sampled from a normal distribution with mean 1 and standard devi-

ation 1. Each of our simulations cycles between 10 short-term environments, which make up

the long-term environment. For simplicity, we consider a linear relationship between pheno-

typic targets and environmental cues, so that ϕ = g(C) = g1 � e + g0. Hence, the targets are

directly proportional to the respective cue. We choose g1 = −2 and g0 = 6. This ensures that the
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relationship between selective environment and cues remains constant across environmental

states.

We assume that the lifespan of the individuals is fixed and the same for all. As a result, envi-

ronmental grain is solely determined by the parameter K. K< 1 indicates fine-grained envi-

ronmental variability, where the population encounters an average of 1/K environments

per generation. On the other hand, K>= 1 indicates coarse-grained (K = 1) or slow coarse-

grained (K> 1) environmental variability where the population encounters a new environ-

ment every K generations on average. We choose small K values compared with the total num-

ber of generations in our simulations so that each population is able to evolve for multiple

environmental cycles.

Our simulations were designed with temporal variation in mind, but the conclusions

should be applicable to spatial variation as well. In fact, the environmental fluctuations

described within our model match those experienced by a population in which all individuals

migrate after fitness evaluation and before reproduction, or in which all propagules are dis-

persed to the same new environment. In this scenario environmental change rates are effec-

tively interchangeable with migration rates, with other findings remaining unchanged.

Reaction norm model

We model plastic responses using a univariate linear reaction norm model [42]. A reaction

norm can be defined as the set of phenotypes that would be expressed if the given individual

would be exposed to the respective set of environments. Since we consider univariate and lin-

ear reaction norms, we can describe the development of an organism’s phenotype as P = a +

b � C. Each organism’s genotype can thus be described by the factors a and b. Of those, a deter-

mines the organism’s breeding value and b the direction and magnitude of its plasticity.

Evolutionary process

We model the evolution of a population of asexual individuals as follows. First, we select a

parent using a fitness proportional criterion [43, 44]. Each individual can be selected with a

probability of f =�f , where �f corresponds to mean fitness in the current population and f to the

parent’s own fitness (see section Evaluation of fitness for details on how we calculate f). Then,

we generate a new individual with the same genotype (reaction norm intercept a and slope b)

as the parent. Finally, we independently mutate both the offspring’s intercept and slope by

adding a random value sampled from a normal distribution with mean μ = 0 and standard

deviation equal to mutation size (σμ = 0.01 unless otherwise specified). We repeat this process

until we generate a number of offspring equal to the set population size. The parameters a and

b are initialized at zero.

Evaluation of fitness

Following previous work [35, 37, 38], we define an organism’s overall fitness f in terms of a

benefit-minus-cost function, which allows us to consider both positive (benefits) and negative

(costs) contributions to its fitness. The benefit of a given genotype, bEi , for each environment,

Ei, is determined based on how close the developed adult phenotype, Pa, is to the target pheno-

type, PEi , of the given selective environment, Ei. Since we deal with an univariate phenotype,

we can calculate this amount as

bEi ¼ wðPa; PEiÞ ¼ � jPa � PEi j; ð1Þ

where |�| corresponds to the absolute distance between the two phenotypes. Note that the
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selective advantage of respective genotypes is solely determined by its immediate fitness bene-

fits on the currently encountered selective environment(s). We consider that individuals

experience a distribution of selective environments during their lifetime with occurring proba-

bilities, qE1 ; qE2 ; ::; qEN . Each environment contributes to the selection process in proportion to

its occurrence [45]. The overall fitness benefits of an individual over all experienced environ-

ments in its lifetime, bE is determined by the arithmetic mean of the fitness benefits in each

environment, bEi , weighted by the occurrence, qEi , of each environment:

bE ¼
X

i

qEibEi : ð2Þ

In cases of coarse-grained environmental variability, where each individual encounters a

single environment in its lifespan, qEi ¼ 1 for the respective environment, i = j, and qEi ¼ 0 for

i 6¼ j. On the other hand, in cases of fine-grained environmental variability, we assume a uni-

form distribution of environments experienced during individual’s lifespan, that is, qEi ¼ 1=K.

The cost represents how maintaining plasticity reduces the organism’s fitness. Unlike the ben-

efit, the cost of plasticity is a property of the genotype and does not change in different envi-

ronments. Thus, we can calculate the overall performance, d, of a genotype over a range of

selective environments as

d ¼ bE � ljbj; ð3Þ

where parameter λ indicates how steeply fitness decreases in proportion to the reaction norm

slope b. The final fitness score is calculated with the following formula:

f ¼ expð
d

2o
Þ; ð4Þ

which penalizes lower performances exponentially and re-scales them to a 0-1 range. ω is a

scaling factor on the relation between f and d. Lower ω values cause greater loss of fitness per

loss of performance, and correspond to steeper selection gradients. We choose ω = 0.2, which

corresponds to a scenario of strong selection (see [38]).

Evaluation of reaction norms

We evaluate the adaptive potential of the population due to plasticity by estimating how close

the reaction norm of each individual in the population is to the (theoretical) optimal reaction

norm. The optimal reaction norm here corresponds the function that given any environmental

cue, CEi , produces the appropriate target phenotype, PEi , which best matches the current selec-

tive environment, Ei (Evaluation of fitness). We evaluate the performance of reaction norms

based on how different they are from the optimal reaction norm. The lack of fit, LackD of a

given reaction norm, D, is estimated as a function of the phenotypic trait values in each of the

past selective environments (here 10), Ei, whose magnitude increases quadratically with the

distance from each phenotypic optimum, PEi :

LackD ¼ �
P

Ei
jDðeEiÞ � PEi j

NE
ð5Þ

Where NE stands for the number of past selective environments. The evaluation of lack of

fit is performed for each individual at the end of each environmental period. We report the

average and best performance in the population.

How adaptive plasticity evolves when selected against

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006260 March 8, 2019 17 / 20

https://doi.org/10.1371/journal.pcbi.1006260


Hill-climbing model

A hill-climbing evolutionary model simulates a scenario of strong selection and weak muta-

tion, where each new mutation is either fixed or lost before a new one can arise. Therefore, the

entire population shares the same values of a and b. Each evolutionary step introduces a single

mutant genotype with parameters a0 and b0 equal to a and b plus a random value sampled

from a normal distribution with mean 0 and standard deviation equal to mutation size. We

develop both the reference and mutant phenotypes P and P0 (section Reaction norm model)

and compare their fitness values f and f 0 (section Evaluation of fitness). If f 0 > f, the mutation

is beneficial and therefore adopted so that at+1 = a0 and bt+1 = b0. Otherwise, the mutation is

deleterious and a and b remain unchanged.

Implementation

The code used to generate the results shown in this paper is provided in S1 File.

Supporting information

S1 Appendix. Fitness cost of plasticity and tracking. Numerical calculations of the expected

long-term fitness costs of adaptively plastic and adaptive tracking populations.

(PDF)

S1 Fig. Additional simulation results. Evolutionary trajectories and evolved plasticity in the

absence of cost of plasticity for SSWM (A and B) and population models (C and D).

(TIF)

S1 File. Simulation code. Code used to generate all results shown in the paper.

(RAR)

Author Contributions

Conceptualization: Alfredo Rago, Kostas Kouvaris, Tobias Uller, Richard Watson.

Formal analysis: Alfredo Rago, Kostas Kouvaris.

Funding acquisition: Tobias Uller, Richard Watson.

Investigation: Alfredo Rago, Kostas Kouvaris.

Supervision: Tobias Uller, Richard Watson.

Visualization: Kostas Kouvaris.

Writing – original draft: Alfredo Rago, Kostas Kouvaris, Tobias Uller, Richard Watson.

Writing – review & editing: Alfredo Rago, Kostas Kouvaris, Tobias Uller, Richard Watson.

References

1. Simons AM. Modes of response to environmental change and the elusive empirical evidence for bet

hedging. Proceedings of the Royal Society B: Biological Sciences. 2011; 278(1712):1601–1609. https://

doi.org/10.1098/rspb.2011.0176 PMID: 21411456

2. Botero Ca, Weissing FJ, Wright J, Rubenstein DR. Evolutionary tipping points in the capacity to adapt

to environmental change. Proceedings of the National Academy of Sciences. 2015; 112(1):184–189.

https://doi.org/10.1073/pnas.1408589111

3. Moran NA. The Evolutionary Maintenance of Alternative Phenotypes. The American Naturalist. 1992;

139(5):971–989. https://doi.org/10.1086/285369

How adaptive plasticity evolves when selected against

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006260 March 8, 2019 18 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006260.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006260.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006260.s003
https://doi.org/10.1098/rspb.2011.0176
https://doi.org/10.1098/rspb.2011.0176
http://www.ncbi.nlm.nih.gov/pubmed/21411456
https://doi.org/10.1073/pnas.1408589111
https://doi.org/10.1086/285369
https://doi.org/10.1371/journal.pcbi.1006260


4. Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity

and the potential for contemporary adaptation in new environments. Functional Ecology. 2007; 21

(3):394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x

5. Hoverman JT, Relyea RA. How flexible is phenotypic plasticity? Developmental windows for trait induc-

tion and reversal. Ecology. 2007; 88(3):693–705. https://doi.org/10.1890/05-1697 PMID: 17503597

6. Van Buskirk J, Steiner UK. The fitness costs of developmental canalization and plasticity. Journal of

Evolutionary Biology. 2009; 22(4):852–860. https://doi.org/10.1111/j.1420-9101.2009.01685.x PMID:

19226418

7. Auld JR, Agrawal AA, Relyea RA. Re-evaluating the costs and limits of adaptive phenotypic plasticity.

Proceedings of the Royal Society B: Biological Sciences. 2010; 277(1681):503–511. https://doi.org/10.

1098/rspb.2009.1355 PMID: 19846457

8. Levins R. Evolution in changing environments: some theoretical explorations. 2. Princeton University

Press; 1968.

9. Rountree DB, Nijhout HF. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera:

Nymphalidae). Journal of Insect Physiology. 1995; 41(11):987–992. https://doi.org/10.1016/0022-1910

(95)00046-W

10. Moczek AP. Pupal remodeling and the evolution and development of alternative male morphologies in

horned beetles. BMC evolutionary biology. 2007; 7:151. https://doi.org/10.1186/1471-2148-7-151

PMID: 17727716

11. Michie LJ, Masson A, Ware RL, Jiggins FM. Seasonal phenotypic plasticity: Wild ladybirds are darker at

cold temperatures. Evolutionary Ecology. 2011; 25(6):1259–1268. https://doi.org/10.1007/s10682-011-

9476-8

12. Kaji T, Palmer AR. How reversible is development? Contrast between developmentally plastic gain and

loss of segments in barnacle feeding legs. Evolution. 2017; 71(3):756–765. https://doi.org/10.1111/evo.

13152 PMID: 28012177

13. van Gestel J, Weissing FJ. Regulatory mechanisms link phenotypic plasticity to evolvability. Scientific

Reports. 2016; 6(1):24524. https://doi.org/10.1038/srep24524 PMID: 27087393

14. Gerber N, Kokko H, Ebert D, Booksmythe I. Daphnia invest in sexual reproduction when its relative

costs are reduced. Proceedings of the Royal Society B: Biological Sciences. 2018; 285:20172176.

https://doi.org/10.1098/rspb.2017.2176 PMID: 29343596

15. BRAKEFIELD PM, REITSMA N. Phenotypic plasticity, seasonal climate and the population biology of

Bicyclus butterflies (Satyridae) in Malawi. Ecological Entomology. 1991; 16(3):291–303. https://doi.org/

10.1111/j.1365-2311.1991.tb00220.x

16. Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH. Adaptive pheno-

typic plasticity: consensus and controversy. Trends in Ecology and Evolution. 1995; 10(5):212–217.

https://doi.org/10.1016/S0169-5347(00)89061-8 PMID: 21237012

17. Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic

assimilation. Journal of Evolutionary Biology. 2009; 22(7):1435–1446. https://doi.org/10.1111/j.1420-

9101.2009.01754.x PMID: 19467134

18. Gomulkiewicz R, Kirkpatrick M. Quantitative Genetics and the Evolution of Reaction Norms. Evolution.

1992; 46(2):390–411. https://doi.org/10.1111/j.1558-5646.1992.tb02047.x PMID: 28564020
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