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Abstract

Developmental mechanisms not only produce an organismal phenotype, but

they also structure the way genetic variation maps to phenotypic variation.

Here, we revisit a computational model for the evolution of ontogeny based on

cellular automata, in which evolution regularly discovered two alternative

mechanisms for achieving a selected phenotype, one showing high modularity,

the other showing morphological integration. We measure a primary variational

property of the systems, their distribution of fitness effects of mutation. We find

that the modular ontogeny shows the evolution of mutational robustness and

ontogenic simplification, while the integrated ontogeny does not. We discuss

the wider use of this methodology on other computational models of

development as well as real organisms.

1 | INTRODUCTION

The idea that phenotypic variation could ever be
“unbiased” is a historical artifact coming from two main
sources: First were the early characterizations of quanti-
tative genetic variation for single traits or small numbers
of traits. Such measurements are actually projections of
the extremely high dimensionality of organismal proper-
ties into very few dimensions. When the additive genetic
variance was measured for these low‐dimensional
projections, positive additive genetic variance was dis-
covered to be ubiquitous, and this finding was confirmed
by selective breeding experiments that showed popula-
tions were widely responsive to artificial selection, so
these trait values could be changed. The second step was
the extrapolation of these low‐dimensional observations
to the entire organism, resulting in the adoption of the
classical infinitesimal model of quantitative genetics
(Barton, Etheridge, & Véber, 2017; Fisher, 1919) as a
plausible model for the entire, high‐dimensional orga-
nismal phenotype, in which genetic variation is essen-
tially a gas that can fill any selective phenotypic bottle
(enunciated by Hill & Kirkpatrick (2010) who

summarize, “almost anything can be changed if it shows
phenotypic variation” and “combinations of traits, even
those unfavorably correlated, can be changed”). Once the
premises of this “pan‐variationism” are accepted, pans-
electionism is the natural conclusion—in other words, if
variation is diffusing in every phenotypic direction, the
only source of information that shapes an organism’s
phenotype is natural selection.

Breaking away from the pan‐variationist paradigm has
been a prolonged process. Rupert Riedl’s analysis was
pioneering in this regard (Riedl, 1975, 1977, 1978), pointing
out that the very ability to infer phylogenies based on
phenotypes requires that natural selection be limited in its
ability to erase the phenotypes of the past. Riedl proposed,
furthermore, that complex phenotypes which require multi-
ple simultaneous trait changes would often be impossible to
evolve without the advent of genes that happen to make the
right pleiotropic combination of multiple trait changes, and
that such genes produce a genotype–phenotype map “in
which gene interactions have imitated the patterns of
functional interactions in the phenome” (Riedl, 1977).

In the 1980s came the identification of “developmen-
tal constraints” as sources of information other than
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natural selection that shape evolution (Bonner, 1982).
Subsequently, it was recognized that development also
focuses phenotypic variation along certain dimensions,
thus enhancing the likelihood of evolution taking these
paths (Roth & Wake, 1985). Together these have been
combined into the concept of “developmental bias”
(Yampolsky & Stoltzfus, 2001).

This term “bias,” however, still makes reference to the
pan‐variationist frame (Fillmore, 1976; Lakoff, 2014) that
poses “unbiased” phenotypic variation as somehow a
viable concept, and even perhaps a most‐parsimonious
null hypothesis.

When viewed from the vantage point of develop-
mental mechanisms, it is clear that the processes that
produce the physical structures of organisms will also
structure the phenotypic variation that results from
genetic and environmental variation. The idea of
“unbiased” phenotypic variation is, from this vantage
point, as sensible as the idea of “unstructured develop-
ment”—which of course, makes no sense at all.

The question we need to be asking, then, is not how
development biases phenotypic variation, but rather, how
development structures it. This is the framework that we
adopt here. It is hypothesized in Altenberg (2005) (and
more recently Runcie & Mukherjee (2013)) that organis-
mal variation actually lies on very low‐dimensional
manifolds embedded within the high‐dimensional trait
space. Within this framework, a principal open problem
in evolutionary theory is to understand in what ways the
developmental structuring of phenotypic variation may
itself be systematically shaped by the evolutionary
process. That is the question pursued here.

1.1 | Ontogeny as a dynamical system

Ontogeny in many animals exhibits several properties of
an autonomous dynamical system, in which the trajec-
tory of the system is set by the initial conditions. In
common animal development, the mother creates the
initial conditions for the zygote (often some form of egg),
and development occurs in isolation from environmental
interaction, until the organism “hatches.” Development
may be less autonomous in placental mammals because
of continuing material inputs from the mother, but most
of the dynamical interactions of development occur
internally within the embryo and fetus itself.

It is a generic property of dynamical systems that the
trajectories converge toward attractors. Attractors may be
fixed points, cycles, or strange attractors. Whole subsets
of different initial conditions will converge toward the
same attractor, comprising its domain of attraction.
Different domains of attraction will converge toward
different attractors.

The dynamics of epigenesis and ontogeny result from
the complex interactions of the genome, oocyte cytoplas-
mic structure, and multicellular interactions once embry-
ogenesis has begun. This entire process we can refer to as
the generative properties of the genotype–phenotype map.
The problem of concern here—how changes in the
genome map to changes in the phenotype—can be
referred to as the variational properties of the genotype
—phenotype map. This distinction, introduced in Alten-
berg (1995), has been found to be useful in a number of
studies (cf. de la Rosa 2014; Jernvall & Jung, 2000;
Laubichler, Prohaska, & Stadler, 2018; Porto, Schmelter,
VandeBerg, Marroig, & Cheverud, 2016; Reiss et al., 2008;
Salazar‐Ciudad, 2006). The way the phenotype is
generated from the genotype during development is
clearly what structures phenotypic variation, so the
variational properties are derived from the generative.

There is yet no general theory as to how evolution
may shape the variational structure of phenotypic
variation. Many computational models have been ex-
plored to try to tease out the regularities which may be
eventually guide us to a general theory (Dong & Liu,
2017; Scholes, DePace, & Sánchez, 2017; Tsuchiya,
Giuliani, Hashimoto, Erenpreisa, & Yoshikawa, 2016).
Here, we revisit one such computational model which
has produced intriguing results: the cellular automaton
model of development, EvCA.

The cellular automaton is, as the name suggests, an
autonomous dynamical system. Its dynamics are speci-
fied by initial conditions of its multivariable state, and
rules which determine the changes of the state from one
time to the next. Cellular automata (CAs) exhibit
complex attractors and domains of attraction, and more-
over, allow one to watch their development progress.
Here, we will define a task that the CA must achieve to
stay “alive,” and model a population of evolving CAs
whose determining rules are mutated and recombined
and subject to selection.

1.1.1 | The distribution of fitness effects
of mutation

Traditionally, the quantity of interest in evolutionary
simulations has been the fitness of the digital organisms.
Here our focus is on the variational properties of these
organisms, and we investigate a principal quantification
of how genetic variation maps to phenotypic variation,
the distribution of fitness effects (DFE) of mutation, which
is the probability distribution over the changes in fitness
caused by mutation of a given genotype.

The DFE of mutation provides a quantitative way to
characterize the widely used concepts of mutational
robustness, deleterious mutation, and evolvability. It is
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the probability distribution of mutant offspring’s fitnesses
relative to the parent’s fitness. The distribution can be
divided into three regions: (a) the lower tail, comprising
deleterious mutations; (b) the measure near 1 (the
parent’s relative fitness), comprising the neutral muta-
tions, which quantifies mutational robustness; and (c) the
upper tail of the distribution, where the advantageous
mutations occur, which characterizes evolvability. This
quantification of evolvability was introduced in Alten-
berg (1994, 1995). Its use as a statistic to guide variation
operators in evolutionary algorithms goes back to
Rechenberg (1973), who introduced the integrated upper
tail as the “success probability.”

It should be noted that there has been controversy and
confusion in the literature about whether evolvability
should be considered a group property (such as popula-
tion or species or lineage), or instead an individual
property (cf. Brown, 2013). The DFE of mutation is
clearly a property belonging to an individual genotype,
but it is measurable only by observing the fitnesses of the
individual genotype’s offspring. So, it is never something
we can measure in the individual itself, being rather an
abstract “dispositional” property (Wagner, 1981) or
“propensity” of the genotype. Also, it should be noted
that the DFE can change with each genotype in a
succession of mutations, so the upper tail of the fitness
distribution is only an immediate measure of evolvability
by mutation, and it is necessary to know what happens to
the upper tail along a sequence of fitter mutations to
know what the long‐term evolvability is.

An additional variational property is modularity—the
extent to which genetic variability exists to vary different
phenotypic properties as independent dimensions of
variation. Here, we show that the evolution of both
robustness and modularity can be observed (and ana-
lyzed) in the computational model of evolving cellular
automata (EvCA). In the EvCA project, a GA was used to
evolve CAs to perform nontrivial computational tasks,
with the aim of answering the general question: “How
does evolution produce sophisticated emergent computa-
tion in systems composed of simple components limited
to local interactions?” (Hordijk, 2013).

Recently, this EvCA framework was used to argue for
complexity by subtraction, that is, the idea that complexity
may start out high and subsequently be reduced by
natural selection without loss of functionality (McShea &
Hordijk, 2013). It turns out that the observed “simplifica-
tion” during evolution in the EvCA model is related to
both robustness and modularity, as we will show in the
current paper.

First, we present a brief review of the EvCA model,
and explain the basics of CAs and GAs. Next, we show
that the evolution of robustness and modularity can be

explicitly observed, and how it can be analyzed in this
model. It is our hope that these results and this
methodology could lead to suggestions for actual experi-
ments and predictions on the evolution of evolvability in
actual biological systems.

2 | METHODS: EVOLVING CAS
WITH A GENETIC ALGORITHM

CAs are discrete dynamical systems which are simple to
define but whose dynamics capture many essential
mathematical properties of complex systems. For this
reason, we use them as a model of development. They
consist of an array of cells, each of which exists in one of
a usually small number of states. The states of the array
change over time. The change of the array over time is
our model of development. Their next state in time of a
cell in the array is a function of (a) its own current state
and (b) those of a limited number of its local neighbors.
With these simple dynamics CAs are able to produce a
wide variety of intricate patterns in their aggregate
dynamical behavior. These patterns are often considered
to be emergent, in that they are not evident in the simple
local rules of the individual components, but arise at a
global level as their states progress in time.

We model the evolution of a developmental system by
subjecting the CAs to a genetic algorithm (GA), which is
a stochastic search and optimization method that is based
on evolution by natural selection, and is therefore also
often used as an actual computational model of an
evolutionary process. Combining these two methods (GA
and CA) provides a useful and versatile computational
framework to study the evolution of robustness and
modularity, as we will show below.

2.1 | Cellular automata

CAs were originally introduced by John von Neumann
(after a suggestion by his colleague Stanislaw Ulam) to
study the logic of self‐reproduction (Burks, 1970; von
Neumann, 1966). They were later popularized with John
Conway’s “Game of Life” (Gardner, 1970). Because of
their intricate and emergent dynamical behavior, CAs are
often used as simple computer models to study pattern
formation, self‐organization, and emergence.

In its simplest form, a CA consists of a linear array (or
lattice) of identical “cells,” each of which can be in one of
two states, say zero or one. At each time step (or
iteration), all cells simultaneously update their state
according to a fixed update rule, depending on their
current local “neighborhood configuration”, which con-
sists of the cell itself, its n left neighbors, and its n right
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neighbors, so that n2 + 1 cells determine its next state.
This update rule simply states for each possible
neighborhood configuration what the new state of the
center cell will be. A rule, then, is a binary‐valued map

→f : {0,1} {0,1}n2 +1 . Given two possible states and a
three‐cell neighborhood, there are 23 = 8 possible neigh-
borhood configurations. An example of such an update
rule, represented as a look‐up table (LUT), is given below.
The top row lists the eight possible local neighborhood
configurations, while the bottom row lists the corre-
sponding new state of the middle cell.

Neighborhood 000 001 010 011 100 101 110 111

New state 0 1 0 0 1 0 0 0

A two‐valued CA with n= 1, which yields a neighbor-
hood size of 3, is known as an elementary cellular
automaton (ECA; Wolfram, 1983), and the particular
update rule shown above is known as ECA 18 out of the
256 = 28 possible rules, as there are eight possible
neighborhood configurations, and two choices for how
the rule maps each configuration. Depending on which
particular rule is used, the system as a whole (the lattice
of cells), can show very different types of dynamical
behaviors, from fixed point or simple periodic, to very
complex or even (seemingly) random behavior.

Figure 1 shows the dynamical behavior of ECA 18 in a
so‐called space–time diagram, with white representing the
state zero and black representing the state one. In this
diagram, space is horizontal and time is vertical. The top
row (100 cells wide) is the initial configuration (IC), which
in this case was generated at random. Each next row is the
CA configuration after applying the update rule to all cells
simultaneously, for a total of 100 iterations. Note that
periodic boundary conditions are used, that is, the lattice is
considered to be circular so that the left‐most cell and the
right‐most cell are each others’ neighbors.

Of course there are many possible variations on the
basic definition of CAs. For example, more than two
states can be used, or a larger neighborhood size, or a
higher‐dimensional lattice. Each of these variations
increases the size of the update rule, and thus also the
total number of possible rules. Other variations such as
asynchronous updates, nonuniform update rules, or
randomness in the update rule can be included. The
possibilities are endless, and so are the range and
complexity of corresponding dynamical behaviors. For
our purposes, a 2‐state CA with neighborhood size 7
exhibits sufficiently rich behavior.

We do not attempt to identify actual biological
interactions in development that resemble the CA rules,
which would be an awkward fit at best. The relationship

between this CA model of development, and actual
organismal processes of development, is similar to that
between artificial neural network models of cognition
and the actual workings of the brain: it is on a dynamical
structure level rather than a part‐for‐part analogy. The
dynamical structure here is that cells communicate
locally with other cells and interact according to certain
rules, and we want to see if the rules can evolve so as to
produce a desired collective behavior.

2.2 | Genetic algorithms

Genetic algorithms are an extension of Darwinian
evolution to structures beyond organisms and their
DNA genotypes, to systems where the genotype may be
any data structure, and the phenotype is produced by a
computation performed upon this data structure. In
using CAs as a model evolutionary system, we are
treating the CA update rule (LUT) as the “genotype,” and
the actual dynamical behavior of the CA (as visualized in
a space–time diagram) as the corresponding “pheno-
type,” and more specifically, as a model of ontogeny.

Moreover, we are using the computational capability of
the CA as a model of how the organism can achieve a given
phenotype despite randomness in its initial conditions and
environment. In this way, the CA models the evolution of
canalization, which is the stabilization of a developmental
trajectory in the presence of environmental noise (Wadding-
ton, 1942). As our model phenotype we are building upon

FIGURE 1 A space–time diagram of Elementary CA 18. Space
is horizontal (100 cells) and time is vertical (100 iterations), starting
from a random initial configuration (IC) in the top row. Periodic
boundary conditions are used. CA, cellular automaton
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prior work in which the CA was evolved to produce a
globally synchronized oscillator (Das, Crutchfield, Mitchell,
& Hanson, 1995; Hordijk, Crutchfield, & Mitchell, 1996;
Hordijk, Crutchfield, & Mitchell, 1998).

As in natural evolution (at least to a first approxima-
tion), the random changes (mutation and recombination)
happen at the level of the genotype, but fitness is
determined at the level of the phenotype (the global CA
dynamics). What makes this computational model of
interest is that its genotype–phenotype map is analogous
to the map from DNA genotype to organismal phenotype,
in that it goes from the specification of a dynamical
system to the behavior of the dynamical system.

A GA (Goldberg, 1989; Holland, 1975; Mitchell, 1996)
is a stochastic search method that tries to evolve better
and better solutions to a given optimization problem by
emulating Darwinian evolution and Mendelian genetics.
The idea is to maintain a population of candidate
solutions, suitably represented in a mathematical way,
and create subsequent generations by applying selection,
recombination, and mutation on the individuals (or their
representation) in the current population, thus mimick-
ing natural evolution. In each generation, the individuals
(candidate solutions) in the population are applied to the
given problem, and assigned a fitness value which
indicates how well they solve the given problem. Based
on these fitness values, they are then selected to “mate”
and create offspring to make up the next generation.

This simulated evolutionary process generally leads to
more and more fit (i.e., better and better) candidate
solutions to the given problem. GAs have been used
widely and successfully to find good approximate
solutions to problems for which there is no analytical
or efficient algorithmic way to find the best possible
solution (including, to cite a highly publicized example,
the recent production of the first image of a black hole by
The Event Horizon Telescope Collaboration (2019).

2.3 | Evolving CAs with a GA

Imagine the following computational task for a cellular
automaton, known as global synchronization: from any
IC, the CA has to settle down to a synchronized temporal
oscillation between an all‐white configuration and an all‐
black configuration. This task was first described and
studied in Das et al. (1995). Note that this is a nontrivial
task for a CA, as it requires global information proces-
sing, even though each individual cell can only commu-
nicate locally (with its direct neighbors). It is inspired by
the so‐called firing squad problem (Moore, 1964), which is
to get the cells in a CA to a synchronized state, and by
natural phenomena such as the synchronous oscillations
observed in fire flies, bacterial colonies, and the brain.

Here we utilize a cellular automaton with a local
neighborhood of size 7, consisting of a cell itself and its
nearest three neighbors on either side (called a radius of
three). This gives rise to an update rule (LUT) with
27 = 128 entries (possible neighborhood configurations),
which means there are 2128≈ 3.4 × 1038 possible 2‐state,
radius‐3 CA update rules, the number of possible
“genotypes,” a set equal in size to all possible
64‐base‐long nucleotide sequences.

We apply an update rule to a lattice of 100 cells. The
states of these 100 cells correspond to the state of a part of an
organism as it develops in time. Thus there are
2100≈ 1.27× 1030 possible “organismal” states. The question
is then: Is there such a CA that can perform the global
synchronization task, and if so, how do we obtain it?

Das et al. (1995) used a GA to search through the
astronomically large space of possible CA rules, resulting
in CAs that can perform the global synchronization task
perfectly. The population in this GA consisted of (initially
random) CA update rules, represented by bit strings. The
fitness value of each such a CA was then determined by
iterating the corresponding update rule on a set of 100
random ICs, and simply counting on how many of these
ICs it correctly settles down to the required globally
synchronized oscillations within a maximum number of
iterations. Figure 2 illustrates this population‐based
evolution and fitness calculation process graphically.

In a later study by McShea and Hordijk (2013) these
experiments were repeated, and 100 GA runs on the
global synchronization task were performed using the
same parameter settings as in the original experiments
(Das et al., 1995). This also resulted in several perfect
rules. Here, we revisit this computational evolutionary
system to investigate the evolution of variational proper-
ties of the genotypes (Altenberg, 1995), including
robustness, canalization, modularity, and evolvability.

3 | RESULTS: THE
DEVELOPMENTAL STRUCTURING
OF PHENOTYPIC VARIATION

The repeated experiment of 100 runs of the GA on the
global synchronization task of McShea and Hordijk
(2013) mainly resulted in three different “classes” of
evolved CA rules:

1. Particle rules.
2. Condense rules.
3. Mixed (1 and 2).

Figure 3a shows an example of an evolved “particle rule.”
As was already described and analyzed in Das et al. (1995),
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such a CA rule uses emergent patterns in its dynamical
behavior to resolve the conflict between locally oscillating
regions that are out of phase with each other. In particular,
there are the “regular domains,” that is, the regions with
local oscillations between black and white, and the regions
with alternating black and white L‐shapes. Furthermore,
“particles” (the boundaries between the regular domains)
travel through the lattice at particular speeds and regularly
collide, either annihilating each other or creating other
particles, until eventually all out‐of‐phase conflicts are
resolved and only one globally synchronized oscillating
regular domain is left. More detailed analyses of such
“particle strategies” in evolved CAs were presented in
Hordijk et al. (1996, 1998).

Figure 3b shows an example of an evolved “condense
rule.” Such a CA rule does not make use of explicit particles,
but somehow “condenses” into a globally synchronized state
out of what seems to be almost random behavior. The third
category consists of evolved CA rules that use a mix of these
two behaviors (i.e., “particle” and “condense” combined).
Out of the 100 GA runs, 28 runs resulted in particle rules
(Class 1), 36 in condense rules (Class 2), and another 36 in
mixed rules (Class 3).

For all of these strategies, the CA has to take the
random initial 100‐cell array, which contains an average
of around 70 ± 11 out of the 128 possible 7‐bit neighbor-
hood patterns, and reduce the number of patterns in the
array until only one is called in a give time increment,

either 0000000 or 1111111. Particle rules are able to
quickly reduce the number of patterns in the array to
where they are all 0000000 and 1111111 and a 0/1
mixture representing the “boundaries” between the
0000000 and 1111111s domains. Condense rules take
longer to reduce the number of patterns.

In McShea and Hordijk (2013) it was shown that in
the case of the evolved particle rule shown in Figure 3a,
the particles (domain boundaries) actually simplified
over time (i.e., during the GA evolution), both in number
and in structure, that is, in overall complexity. As was
argued in McShea and Hordijk (2013), there is selective
pressure for this to happen, given that less complex
(“simpler”) particles tend to make fewer mistakes in
reaching the required final state. They thus exhibit
greater canalization in Waddington’s (1942) sense, in that
the simplified domain boundaries reduce the fraction of
initial conditions that go to the wrong attractor.

We now show how this observed reduction in particle
complexity is directly related to the evolution of
robustness and modularity.

3.1 | Mutational robustness and
developmental architecture

For the investigation of how the variational properties of
the CA evolve over time, we examine the DFE of
mutation on the CA‐LUT.

FIGURE 2 Evolving cellular automata with a genetic algorithm. (a) The GA population consists of bit strings, and changes from
generation to generation due to selection, recombination, and mutation. (b) Each individual in the population represents a CA look‐up table,
which it iterated on a set of random initial conditions (ICs) to determine its fitness value on the given task. This fitness is calculated as the
fraction of 100 random ICs on which it shows the correct behavior (e.g., 0.65). (c) Offspring individuals are created by applying
recombination (crossover) and mutation on selected individuals (proportional to their performance measure) from the current population.
CA, cellular automata; GA, genetic algorithm
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Recall that a CA update rule is represented by the LUT,
which lists all the possible local neighborhood configura-
tions, together with the corresponding cell states at the next
time step. For the 2‐state, radius‐3 (7‐cell wide) neighbor-
hood CAs used in the evolving CAs model, there are 128
entries in the LUT, each having either a 0 or a 1 to indicate
the new cell state. For an LUT to solve the synchronization
problem, the neighborhood 0000000 must output 1, and the
neighborhood 1111111 must output 0.

Using the standard lexicographical ordering of the
possible local neighborhood configurations (i.e., 0000000,

0000001, 0000010, and so on until 1111111), a CA update
rule (or LUT) can thus be conveniently represented by a
bit string of length 128 (i.e., the bit string made up of the
bits in the bottom row of the LUT). This 128‐bit string is
the “genotype.”

To show the evolution of robustness in CAs, first the
best individual (CA rule) in each generation of a given
GA run was taken (the GA was run for 100 generations in
all experiments). For each of these “best‐of‐generation”
CA rules, four statistics were then calculated:

1. Fraction of correct ICs (fitness).
2. The fitnesses of all 128 possible mutants of this best‐

of‐generation rule.
3. Fraction of deleterious mutants.
4. Fraction of LUT entries used by the rule (a generative

property of the CA).

Statistics 1, 3, and 4 range in values between 0 and 1.
Fraction of correct ICs: A CA’s fitness value is simply

the fraction of ICs on which it correctly reaches the
globally synchronized oscillations within the maximum
number of iterations. During the evolution of the CAs by
the GA, for the sake of computational time only 100
random ICs were sampled in determining fitness. For the
Statistic 1 in the list above, a more accurate estimation of
the fitness of each CA rule was recalculated on a set of
10,000 random ICs.

Fitnesses of all 128 possible mutants: To obtain the DFE
of mutation, individuals with all possible mutations of a
single bit are generated, producing 128 mutant individuals,
where a one‐bit mutant is the original bit string representing
the CA‐LUT, but with one of the 128 bits flipped
(“mutated”). The fitness of all 128 one‐bit mutants was
calculated (also on 10,000 random ICs). These distributions
are depicted as they change during an evolutionary run in
Figure 6 (see additional explanation in text).

Fraction of deleterious mutants: To focus on the
mutational robustness of the CA, for each CA it was then
calculated what fraction of its 128 one‐bit mutants is
deleterious, that is, has a lower fitness than the parent CA
itself, the converse of robustness. Given that there is
some variance in the fitness calculations depending on
which particular set of random ICs is used, a one‐bit
mutant is considered to be deleterious if its fitness is less
than the original CA’s fitness minus 0.01 (roughly the
equivalent of one standard deviation on 10,000 ICs, i.e.,
1/ 10,000 ). This provides Statistic 3 above.

Fraction of LUT entries used: Our principal purpose
here is to show how genotypes with different generative
properties are associated with different variational
properties. Recall that the generative properties are the
ways that the genotype is actually utilized to produce the

FIGURE 3 Space–time diagrams of (a) an evolved particle rule
and (b) an evolved condense rule
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phenotype. Here, we examine a very coarse‐grained
generative property of the CA, which is the fraction of
LUT entries actually used during the iteration of the CA.
An entry of the LUT is called during execution of the CA
when one of the 7‐cell wide neighborhoods in the 100‐cell
array has a bit pattern corresponding to that entry.
During the first time step of the CA with the random
initial array, on average around 70 entries of the LUT are
called (as mentioned earlier), for each of the 7‐cell wide

neighborhoods in the 100‐cell array. When synchroniza-
tion has finally been achieved, only two entries of the
LUT are called, one for 0000000 and one for 1111111.

To compute the fraction of LUT entries called during
iteration, a given CA is iterated for the allotted time on

FIGURE 4 The fraction of correct ICs (fitness; black line),
deleterious mutants (red line), and LUT entries used (blue line), for
the best CA rule in each generation, averaged over the GA runs
that resulted in (a) particle rules and (b) condense rules. CA,
cellular automaton; GA, genetic algorithm; IC, initial
configuration; LUT, look‐up table

FIGURE 5 The fraction of 1s in the output bit for
neighborhoods with different numbers of 1s, averaged over all
particle rules (yellow/gray) or all condense rules (black),
respectively

FIGURE 6 Evolution of the distribution of fitness effects of
mutation during 100 generations of a GA run. Plotted are the
fitness differences between the best CA rule in each generation and
all of its 128 one‐bit mutants. An interactive version that can be
zoomed and rotated can be found on the following web page:
http://WorldWideWanderings.net/General/Mutants/index.html.
See the Supplementary Information for an explanation of why the
flat areas correspond to modes of the distributions. CA, cellular
automaton; GA, genetic algorithm
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100 random ICs, and each time a particular LUT entry is
consulted (i.e., a cell finds itself in that particular local
neighborhood configuration), that LUT entry’s count is
increased by one. In the random initial state, all LUT
entries have an equal chance, 1/128, of being called.
Under canalizing CA dynamics, each iteration tends to
generate fewer and fewer neighborhood patterns. We
avoid the initial period by skipping the first 10 iterations
when counting the calls to the LUT entries. The counts
over the remaining iterations are then averaged over all
100 ICs, and we course‐grain the statistic by considering
an LUT entry to be “used” if this average count is larger
than 10. This provides Statistic 4 above.

Figure 4a shows Statistics 1, 3, and 4, averaged over
the 28 GA runs that resulted in an evolved particle rule
(Class 1). The fitness of the best individual in each
generation (i.e., the fraction of correct ICs; black line)
increases rapidly in the first few generations, starts
leveling off close to generation 20, and reaches a plateau
by around generation 30.

However, even though the fitness reaches a plateau,
evolution at the genotype and developmental levels con-
tinues. As the red line in Figure 4 shows, the fraction of
deleterious mutants initially increases (which is to be
expected as genotypes get fitter), but once the fitness increase
starts to level off (around generation 20), the fraction of
deleterious mutants actually decreases again. And similarly
for the fraction of LUT entries used (blue line).

This clearly shows the evolution of mutational
robustness: once fitness has reached a plateau, there is
selective pressure for CA rules to become more robust
(i.e., have fewer deleterious mutants). This is achieved
by reducing the number of LUT entries used to
generate the required dynamical behavior (i.e., parti-
cles) to solve the global synchronization task, so that
there is a lower chance of a mutated LUT entry ever
being called by the CA.

The behavior here should be contrasted with that for
simple genotype–phenotype maps such as Fisher’s
geometric model (Fisher, 1930), or Kingman’s House‐
of‐Cards mutation model (Kingman, 1977, 1978), in
which the evolution of mutational robustness is impos-
sible (Altenberg, 2015). Fisher’s geometric model sup-
poses that the phenotype is a point in an n‐dimensional
space, and its fitness increases the closer it is to a global
optimum phenotype. Mutation samples the space in a
ball around the parental phenotype. The closer the
phenotype is to the optimum, the bigger is the fraction
of that mutation ball that takes the phenotype away from
the optimum. Kingman’s House‐of‐Cards mutation mod-
el supposes that the distribution of fitnesses from
mutation is the same for all genotypes. Thus, the fitter
the parent, the smaller the fraction of its mutant offspring

that are still fitter than it. In both models, as evolution
progresses, the fraction of deleterious mutations in-
creases monotonically, while the fraction of advanta-
geous mutations decreases monotonically.

The observed reduction in the number of LUT entries
used during the “development” of the CA is obviously
also directly related to the observed reduction in particle
complexity (at the level of the phenotype) as shown in
McShea and Hordijk (2013): simpler particles require
fewer bits in the LUT.

Additional support for this claim is given in Figure 4b,
which shows the same three statistics averaged over the
36 GA runs that resulted in an evolved condense rule
(Class 2). In this case there is no evolution of robustness:
both the fraction of deleterious mutants (red line) and the
fraction of LUT entries used (blue line) level off in their
ascent, but never decrease, not even after the fitness has
reached a plateau.

We attribute this behavior to the nature of the
“condense” strategy of synchronization. Synchronization
is not achieved by simple domain boundaries interactions
as in the “particle” strategies. Rather, synchronization
results from a complex interaction of myriad neighbor-
hood structures that is not easily understandable. A large
diversity of neighborhoods are required for this mechan-
ism, hence no decrease in the number of LUT entry calls
as the population evolves. As numerous LUT entries are
required, mutation of any of them is more likely to result
in a loss of fitness, and this limits the evolution of
mutational robustness. This provides a striking example
of how the mechanisms of development (here, the LUT
entries) strongly structure the phenotypic effects of
genetic variation.

This brings up the question whether a difference
between the particle rules and condense rules can also be
seen in the generative properties of their genotypes.
Figure 5 shows such a comparison. It plots the probability
that a 7‐bit neighborhood is mapped to a 1 as a function
of the number of 1s it contains. The horizontal axis in this
figure shows the number of 1s in a local neighborhood
configuration, ranging from zero to seven (recall that the
local neighborhoods consist of seven cells). The vertical
axis shows the fraction of those neighborhoods that have
a 1 as the “output bit” (i.e., new cell state), averaged over
all such neighborhoods for all 28 particle rules (yellow/
gray) or all 36 condense rules (black), respectively.

To fulfill the synchronization goal, the neighborhood
1111111 must map to 0, and the neighborhood 0000000
must map to 1, so that the CA oscillates between all 0s
and all 1s every iteration. This is seen at the endpoints of
the curve, where the all‐0s string maps to 1 with
probability 1, and the all‐1s string maps to 1 with
probability 0 (i.e., it maps to 0).
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The probability distributions for both particle and
condense have an average slope of −1. This means that
having an equal number of 1s and 0s in a neighborhood is
an unstable state, and that an asymmetry in the number
of 1s and 0s is magnified every iteration, on average,
precisely the condition needed to get growing oscillations
in composition.

We observe key differences, nevertheless, between the
particle and condense curves. The slope of condense is
markedly less steep than the slope of particle in the
neighborhood configurations ranging from 2 to 5 ones,

where 87% of the configurations lie ∑( )k
(
7
)/2

k=2

5 7 . This

means that particle rules more rapidly drive the CA away
from a mixture of 1s and 0s toward the direction of all 1s
or all 0s, where fewer distinct neighborhoods are
possible. This is why there are fewer distinct calls made
to the LUT in particle than in condense rules.

In other words, the particle rules “canalize” the
outputs toward all 0s or all 1s faster during ontogeny
than do the condense rules. This partly explains why
particle rules tend to have a higher fitness, and why they
are more robust.

3.2 | Evolution of mutational
robustness in particle rules

Mutational robustness (Statistic 3) is a summary property
of the DFE of mutation. However, our computational
system enables us to observe the entire distribution
(Statistic 2) during evolution and see if it shows any
systematic evolution.

Figure 6 shows the evolution of the DFE over 100
generations. It plots the distribution of fitness differences,
fm− fb, between the best individual in each generation
(fb) and each of its 128 one‐bit mutant offspring (fb), for
the same GA run from which the above‐analyzed CA
rules were taken. Those differences are all plotted in
sorted order.

We first note the two large plateaus, one at the top
(i.e., nearly neutral mutations around the parent CA’s
fitness), and one at the bottom. Plateaus in these sorted
values are where many genotypes have nearly the same
fitnesses, so the probability distribution near that value is
high. That makes those values modes of the probability
distribution. The way that a mode translates into a
plateau is explained in the Supplementary Information.

The two plateaus in Figure 6, at top and bottom, reveal
that the DFE of mutation is bimodal, with one mode near
neutrality, and the other mode near lethality. It is notable
that most every empirical study of DFEs finds similar
bimodal distributions, with one mode near neutrality,
and the other mode near lethality (Bernet & Elena, 2015;

Eyre‐Walker & Keightley, 2007; Hietpas, Jensen, &
Bolon, 2011; Hogeweg, 2010; Zeyl & DeVisser, 2001).
This seems to be a general phenomenon, one that begs
for a general theoretical explanation. (We should note
that Fisher’s geometric model can be made to produce a
bimodal distribution with the right mean and variance
values in the mutational distribution. Kingman’s House‐
of‐Cards model, on the other hand, can have a bimodal
distribution only by construction.)

The edge of the top plateau gives the proportion of
deleterious mutants. It forms one of the data points that
were averaged to produce the red curve in the right graph
in Figure 4. The curve at Generation 1 represent the
mutant fitnesses of the best CA in the initial random
population. The flatter slope here represents the fact that
this initial best fitness is very low, and most of its mutant
offspring have similarly low fitness. As soon as fitter
mutants are generated, the mutational robustness de-
creases for about 10 generations, but then begins to
increase, and reaches a steady distribution after about 20
generations. The average over many such distributions
shows that the fraction of mutations that are deleterious
continues to decline after Generation 10 to the end of the
runs at Generation 100.

Figure 6 also exhibits an observed “notch” in the
distribution, indicating a third, lower mode at a
deleterious fitness of about −0.4. The cause and implica-
tions of this third mode are yet to be examined.

3.3 | Further out on the adaptive
landscape

In the previous section, we saw how the potential to
evolve mutational robustness depends on the develop-
mental strategies used to achieve a phenotype. The
particle rules showed the continued evolution of muta-
tional robustness even after reaching a fitness plateau,
while the condense rules never evolved mutational
robustness.

Next we will now take a closer look at the evolution of
the adaptive landscape in the particle rules. We shall see
that not only does the adaptive landscape change for the
fittest evolved individuals, but it also changes for its
mutant offspring.

We take a highly evolved particle rule and sample one
of its deleterious mutant offspring, and compare that
mutant’s adaptive landscape with that of an individual
from an earlier stage in evolution that has the same
fitness as the mutant. From the GA run that produced the
particle rule shown in Figure 3a, we first took the best
individual from the second generation, call it “Early,”
with only an intermediate fitness (0.5164). We then
calculated the fitness values of all its one‐bit mutants,
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and ordered those from the smallest to the largest value.
The result is shown in Figure 7, with the fitness of the
original CA rule indicated by the horizontal black line,
and those of its 128 one‐bit mutants by the black circles
connected by a black line.

Next, we took the evolved particle rule shown in
Figure 3a, which was the best individual in the final
generation of the GA run, and considered a particular
one‐bit mutant of it. This one‐bit mutant, call it “Late,”
has a fitness of 0.5010, that is, very close to that of the
“Early” rule. Similarly, the fitness values of all its 128
one‐bit mutants were then calculated and ordered from
smallest to largest. The result is shown in Figure 7, with
the fitness of the mutant CA rule indicated by the
horizontal red line, and those of its 128 one‐bit mutants
by the red circles connected by a red line.

Several differences are immediately obvious. The
distribution for “Early” has a very broad region of very
little fitness change. Only about 17% of its mutants
have a severe loss of fitness. But also only about 3%
have a substantial fitness advantage. The “Early”
genotype thus shows substantial mutational robust-
ness, but a low level of evolvability (the upper tail of
the distribution).

In contrast, the “Late” deleterious mutant has no
broad plateau. Very few of its mutants are nearly neutral,
but they show a wide spectrum of fitnesses, from zero up
to one, the fitness of its evolved parent. It therefore has
very limited mutational robustness, but large evolvability.

The precise point at which each curve crosses its
neutral mutation line is what determines the fraction of
deleterious versus advantageous mutations. The “Early”
black circles cross the horizontal black line around
mutant 100, whereas the “Late” red circles already cross
the horizontal red line around mutant 80, meaning that a
greater proportion of the “Late” genotype’s mutants are
advantageous, indicating greater evolvability. But it is
the “area under the curve” in the upper tail of the
distribution that is dramatically larger in the “Late”
genotype than in the “Early” genotype, meaning that
there are many compensatory mutations in the “Late”
genotype that can bring its fitness back to that of its
evolved parent. There are actually three bits (the last
three red circles) that can recover this “perfect” fitness in
one mutational step.

In short, a mutant of a later CA with the same fitness
as an earlier CA is clearly more evolvable, but less robust
to mutation, than that earlier CA. This shows that the
adaptive landscape—as measured by the DFE of muta-
tion—is not simply a function of an organism’s fitness.
Rather, the whole adaptive landscape in the vicinity of
the highly evolved particle rule becomes shaped by
evolution.

3.4 | Evolution of modularity in particle
rules

The particle rules have evolved a developmental strategy
of quickly canalizing random initial conditions into a
small number of patterns. In the evolution of particle
rules, we see that the patterns also evolve toward greater
simplicity, which can be quantified here by the number
of LUT entries that are called by the pattern in the
space–time iteration. In contrast, the condense rules have
evolved a developmental strategy in which a complex
interactions of patterns ineluctably produce a synchroni-
zation of the cells. In the evolution of condense rules, we
see in Figure 4b a continual increase in the complexity of
their ontogeny, in that a greater and greater numbers of
LUT entries become called as they evolve.

Here we take a closer look at the structure of the
particle rules—their generative properties.

In McShea and Hordijk (2013) it was shown that there
is a significant reduction in complexity of particles in CAs
evolved for the global synchronization task, both in terms
of number and in terms of structure. In particular, the CA
shown in Figure 3a above, the best one in the final
generation of a GA run, was compared with the best CA
from Generation 15 from the same GA run. Space–time
diagrams for these two CAs are shown in Figure 8 below,
adapted from McShea and Hordijk (2013, fig. 9), where
the regular domains are filtered out, clearly revealing the
particles and their interactions. The different particle
types are labeled with the letters a to e.

Note that particles a, b, and c do not change during the
evolution, that is, they have the same structure in both CAs.

FIGURE 7 The CA fitness (horizontal line) and its mutant
fitness values (circles) for an “Early” rule (black) and the mutant of
a “Late” rule (red). CA, cellular automaton
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However, particle d that exists in the best CA in Generation
15 has disappeared in the best CA in Generation 100.
Furthermore, the structure of particle e in the earlier CA has
simplified significantly in the later CA (labeled e′ there). We
now show how this reduction in complexity during the
evolutionary process leads to modularity.

Each particle type is defined by, or “uses,” a certain
number of CA‐LUT entries. What is of specific interest here
is how much overlap there is in this LUT entry usage
between pairs of particles. The number of LUT entries used
for each particle, and this overlap, are shown below. The
columns contain the three unchanged particles a, b, and c,
while the rows contain the particle that disappears (d) and
the one that simplifies (e to e′). The numbers in parentheses
in the last row and last column indicate the total number of
LUT entries used by each particle, while the other numbers
indicate the number of LUT entries each pair of particles has
in common.

As these numbers show, particle d not only uses a large
number of LUT entries (32), but also has a significant overlap
with the three particles a, b, and c (5, 7, and 8 LUT entries,
respectively). However, this particle has disappeared in the
later CA, thus greatly reducing the total amount of overlap
between different particles. Furthermore, due to its reduction
in complexity (from 50 to 10 LUT entries), the overlap of
particle e with particles a, b, and c (7, 1, and 6, respectively)
all but disappears (becoming 2, 0, and 0, respectively, for
particle e′).

As a consequence, random mutations are much less
likely to affect more than one particle at a time, giving
rise to more robustness. Furthermore, should the CA
needs to adapt to changing circumstances (e.g., a new or
modified task), we would expect that the remaining
particles could now evolve largely independently, giving
rise to increased evolvability. The particle rule CAs could
therefore be considered to have discovered modularity as
their means of evolving the synchronization function.

4 | CONCLUSIONS AND
DISCUSSION

We have employed a complex dynamical system, the
cellular automaton, to explore how different evolved
ontogenic strategies produce different properties of

phenotypic variation. We would not call this “develop-
mental bias” because there is no null hypothesis of what
“unbiased variation” would look like for a dynamical
system such as a cellular automaton. Rather, we seek to
characterize the developmental structuring of the phe-
notypic variation by examining the ontogenic mechan-
isms that produce the phenotype. We have revisited the
case of the evolving CA tasked with synchronizing all the

FIGURE 8 Space–time diagrams of two CAs, one from
Generation 15 (a) and one from Generation 100 (b) from the
analyzed GA run. The regular domains are filtered out to reveal the
particles and their interactions more clearly. CA, cellular
automaton; GA, genetic algorithm
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cells of the CA into an oscillation for any random initial
state, where it was discovered that two very different
ontogenic mechanisms evolve, one the “particle” rule,
and the other the “condense rule.” The evolved “particle”
rules are highly canalizing, and the initial random state
of the CA array is quickly channeled into a very few
patterns—domains and particle boundaries between
them—where these boundary patterns collide and
annihilate each other and leave their neighborhoods in
a synchronized state. The evolved “condense” rules, on
the other hand, find an ontogenic strategy in which a
large number of patterns interact in a complex way that
eventually leads to synchronization. These two strategies
could be described as “parcellation” on the one hand—
the fragmentation of the phenotype into modularly
controlled features, and “integration” on the other—the
production of a phenotype through the complex interac-
tion of many contributing components (Wagner &
Altenberg, 1996).

We examined a principal variational property of the
phenotype, the DFE of mutation, and found that particle
rules go through an evolutionary phase of integration
followed by a phase of parcellation in which the
mutational robustness increases, even after a perfect
phenotype has evolved. Condense rules, on the other
hand, continue an evolutionary trajectory of greater
integration, in which more and more LUT entries
become invoked to achieve the synchronization task on
which fitness is based. The condense rules do not show
any evolution of mutational robustness, but in fact
generate greater numbers of deleterious mutations as
evolution and integration continue.

What we see in this case study is that different
developmental strategies of producing a phenotype
structure the phenotypic effects of genetic variation in
different ways, and also facilitate (in the case of particle
rules) or block (in the case of condense rules) the
potential of evolving one fundamental variational prop-
erty, the evolution of mutational robustness.

The value of this case study is that it points out new
phenomena to investigate in other models of develop-
ment, and potentially in model organisms. CAs have
been used to model diverse biological phenomena (Peak,
West, Messinger, & Mott, 2004). This particular cellular
automaton model has proven of interest to the CAs field
in its own right, but like other useful model systems, it is
one that allows for experimental manipulation and
detailed measurement, with the hope that the phenom-
ena it reveals have wider relevance.

The question arises as to whether the CA model
explored here is a close enough analogy to any actual
developmental processes to enable it to provide more
specific biological insights than the general narrative we

have discussed. The biological analogy of calls to the LUT
would be the expression of genes. The ideal application of
this analogy would be to find an organismal phenotype
that is generated with the expression of a small number
of genes in one species, and a large number of genes in
another species. Biological examples of such phenotypes
undoubtedly exist, but we must leave it to developmental
biologists to bring them to our attention. Certainly
differences exist within single organisms between phe-
notypes that require the expression of large numbers of
genes, and those that are generated with a small gene
expression profile. Attempts to quantify the ubiquity of
these two ends of the spectrum have come to different
conclusions, from the finding of high modularity in
Wagner and Zhang (2011), to the finding that almost
every gene affects many characters (universal pleiotropy)
and almost every character is affected by many genes,
summarized as the omnigenic model of the genotype–-
phenotype map (Boyle, Li, & Pritchard, 2017). Without
wading into the details of such studies, the behavior of
the CA model studied here suggests, at least, that it may
be worthwhile to investigate how the DFE of mutation
may differ in traits exhibiting high polygeny versus those
generated with low polygeny. In our investigation, only a
single trait of the cellular automaton is under selection—
the fraction of inputs that are correctly synchronized—so
our results do not address questions of pleiotropy.
However, there are many properties of the CA behavior
that could also be placed under selection, so evolutionary
CAs have the potential to serve as computational systems
to investigate questions of how evolution may shape
pleiotropy, and vice versa.

Here, we have examined and performed artificial
selection on only one phenotypic property of the CA, the
proportion of initial conditions that the CA successfully
develops into synchronized oscillations. Many other
characteristics of the CA could also be examined; the
complex sequence of states that the CA progresses
through in its ontogeny allow us to dissect the phenotype
into many other characters. We could examine, for
example, the ontogenic trajectories of the fraction of
states that are synchronized, or the distribution of calls to
the 128 LUT entries. Each of these quantities is also
probabilistic, displaying some distribution over the
random initial conditions. A higher‐dimensional analysis
of how the developmental mechanisms of this CA model
structure its production of phenotypic variation would be
merited for any additional phenomena it may uncover.

An important direction to pursue is to expand the
range of models beyond autonomous dynamical systems.
In many cases, the phenotype consists of a map between
environmental inputs and developmental, physiological,
and behavioral responses. We would propose that
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perhaps the most inclusive formulation of the genoty-
pe–phenotype map—one that subsumes phenotypic
plasticity and developmental noise—is to consider a
map from the genotype × environment to a probability
distribution over phenotypes. This would certainly be
helpful with plant development, in which plant growth
responds to the immediate properties of the physical
circumstances, where the specific positions of branches
and leaves are stochastic variables. In this class of
models, we are no longer dealing with the geometry of
attractors and domains of attraction, but to the geometry
of complex mappings between environment inputs and
organismal responses.

Many computational models of development have
been studied in the literature. We would advocate
revisiting these models to analyze how the DFE of
variation, including mutation, recombination, gene du-
plication, and other operators, may evolve differently in
different systems. The collective experience that may
emerge from such studies will provide a basis for a more
general theory for how development evolves to structure
phenotypic variation.
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